

Merchant Integration Guide

PHP API
V 1.2.5

eSELECTplus PHP API July 2, 2013

 Page 2 of 46

Revision
Number

Date Description

V1.1.0 January 2, 2007 -Document edited for coherence

V1.1.1 February 4, 2008 -Section 6. Transaction with Extra features: Purchase with CVD and AVS
(eFraud)
 -Added CVD note.
-Appendix A. Definition of Request Fields – Added CVD note.
-Appendix E. Card Validation Digits (CVD) – Added CVD note.

V1.1.2 June 3, 2008 -Section 6. Transaction with Extra Features – Added Recur Billing Update
(Customer Information)
-Appendix C. Recur Fields
 -Added Recur Update Request Fields.
 -Added Recur Update Response codes.

V1.1.3 October 10, 2008 -Section 6. Transaction with Extra Features – Corrected Recur Update
(Customer Information)
-Section 2. System and Skill Requirement – Added PCI & PA-DSS
requirements note.

V1.2.0 February 27, 2009 -Corrected Document Version number

V1.2.1 July 18, 2011 -New download link updated in various locations
http://www.eselectplus.ca/en/downloadable-content
-Section 8. How do I test my Solution?
 –Added CA Root Certificate File.

V1.2.2 September 9, 2011 -Section 4. Transaction Types and Transaction Process Flow
 -Added Process Flow for PreAuth/ReAuth/capture Transactions
-Section 5. Transaction Examples
 -PreAuth (basic) – Added PreAuth reversal note
 -Added ReAuth example
 -Capture – Added PreAuth reversal note
-Section 6. Transaction with Extra features: Purchase(with VbV)
 -Added enhanced AVS values
-Section 6. Transaction with Extra features
 -Added Purchase with Status Check
-Appendix A. Definition of Request Fields
 -Added orig_order_id
 -Added enhanced AVS request fields
 -Added status_check request field
-Appendix B. Definitions of Response Fields
 -Added CavvResultCode response field
 -Added ITDResponse response field
 -Added StatusCode response field
 -Added StatusMsg response field
-Added Appendix C. CustInfo Fields
-Appendix F. Card Validation Digits (CVD)
 -Added American Express/JCB response codes
-Appendix G. Address Verification Services(AVS)
 -Added American Express/JCB response codes
-Appendix H. additional Information for CVD and AVS
 -Added American Express
 -Added Appendix I. CAVV Result Code

V1.2.3 March 26, 2012 -Section 4. Transaction Types and Transaction Flow
 -Added Card Verification
-Section 5. Transaction Examples
 -Added Card Verification example
-Section 8.How do I test my Solution?
 -Added Card verification Test Card numbers.
-Appendix A. Definition of Request Fields
 -Added new Variable Name (dynamic_descriptor)
-Appendix B. Definitions of Response Fields
 -Removed variable Name CardLevelResult.
-Removed Appendix J. Card Level Result value

eSELECTplus PHP API July 2, 2013

 Page 3 of 46

V1.2.4 January 25, 2013 - Section 4. Transaction Types and Transaction Flow
- Updated PreAuth description
- Updated Capture description
- Removed ReAuth description
- Removed Process Flow diagram

- Section 5. Transaction Examples
- Removed ReAuth
- Updated PreAuth (basic) description
- Updated Capture description
- Updated Void description

- Section 6. Transaction with Extra features - Examples
- Added Capture (setShipIndicator)
- Added Purchase Correction (SetShipIndicator)

V1.2.5 June 28, 2013 - Section 4 – Updated Transaction Types description
- Section 5 & 6 – Updated different transaction types sample codes

 - Added support for dynamic_descriptor request variable to
additional transaction types

 - Added IsVisaDebit response variable
- Section 6 – Transaction with Extra features – Examples

 - Removed variable (setShipIndicator)
-Appendix A – Updated the dynamic descriptor definition
-Appendix B – Added IsVisaDebit definition
- Appendix F and G – Moved the AVS and CVD response codes to a
separate document
-New download link updated in various locations:
https://developer.moneris.com/

eSELECTplus PHP API July 2, 2013

 Page 4 of 46

Table of Contents

1. About this Documentation ..6

2. System and Skill Requirements..6

3. What is the Process I will need to follow?...7

4. Transaction Types and Transaction Flow ...7
Process Flow for PreAuth / ReAuth / Capture Transactions... 9

5. Transaction Examples...10
Purchase (basic) .. 10
PreAuth (basic)... 11
ReAuth ... 12
Capture... 13
Void .. 14
Refund.. 15
Independent Refund... 16
Batch Close .. 17
Open Totals.. 18
Card Verification... 19

6. Transaction with Extra features - Examples..20
Purchase (with Customer and Order details).. 20
CavvPurchase (Purchase with Verified by Visa – VBV or MasterCard SecureCode - MCSC)................................. 23
Purchase (with Recurring Billing) ... 24
Recur Update ... 26
Purchase with CVD and AVS (eFraud) .. 27
Purchase with Status Check... 29

7. What Information will I get as a Response to My Transaction Request?31

8. How Do I Test My Solution?..31

9. What Do I Need to Include in the Receipt? ..32

10. How Do I Activate My Store? ..33

11. How Do I Configure My Store For Production?...33

12. How Do I Get Help?..33

13. Appendix A. Definition of Request Fields..34

14. Appendix B. Definitions of Response Fields...36

15. Appendix C. CustInfo Fields ...38

16. Appendix D. Recur Fields ...39

17. Appendix E. Error Messages ..42

18. Appendix F. Card Validation Digits (CVD) & Address Verification Service (AVS).43
Card Validation Digits (CVD) .. 43
Address Verification Service (AVS) .. 43
Additional Information for CVD and AVS.. 43

19. Appendix G. CAVV Result Code...44

20. Appendix H. Sample Receipt ..45

eSELECTplus PHP API July 2, 2013

 Page 5 of 46

**** PLEASE READ CAREFULLY****

You have a responsibility to protect cardholder and merchant
related confidential account information. Under no circumstances should ANY
confidential information be sent via email while attempting to diagnose
integration or production issues. When sending sample files or code for analysis
by Moneris staff, all references to valid card numbers, merchant accounts and
transaction tokens should be removed and or obscured. Under no
circumstances should live cardholder accounts be used in the test environment.

eSELECTplus PHP API July 2, 2013

 Page 6 of 46

1. About this Documentation

This document describes the basic information for using the PHP API for sending credit card transactions. In
particular, it describes the format for sending transactions and the corresponding responses you will receive. If
you are interested in also being able to accept INTERAC payments via your online application, please refer to
the PHP API with INTERAC Online Payment document found at: https://developer.moneris.com

2. System and Skill Requirements

In order to use the PHP API your system will need to have the following:
1. PHP 4 or later
2. Port 443 open
3. OpenSSL
4. cURL - PHP interface - this can be downloaded from http://curl.haxx.se/download.html

As well, you will need to have the following knowledge and/or skill set:
1. PHP programming language

cURL CA Root Certificate File:

 The default installation of PHP/cURL does not include the cURL CA root certificate file. In order for the
eSelectPlus PHP API to connect to the eSelectPlus gateway during transaction processing, the
‘mpgclasses.php’ file that’s included with the PHP API package needs to be modified to include a path to the
CA root certificate file. Follow the instructions below to set this up.

1) If cURL was not installed separately from your PHP installation, libcurl is included in your PHP installation.
You will need to download the ‘cacert.pem’ file from ‘http://curl.haxx.se/docs/caextract.html’ and save it to the
necessary directory. Once downloaded, rename the file to ‘curl-ca-bundle.crt’ (e.g. 'C:\path\to\curl-ca-
bundle.crt'). If cURL was installed separately from PHP, you may need to determine the path to the cURL CA
root certificate bundle on your system (e.g. 'C:\path\to\curl-ca-bundle.crt').

2) Insert the code below into the ‘mpgclasses.php’ file as part of the cURL option setting, at approximately line
73 below the line ‘curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, TRUE);‘
 curl_setopt($ch, CURLOPT_CAINFO, 'C:\path\to\curl-ca-bundle.crt');
For more information regarding the CURLOPT_SSL_VERIFYPEER option, please refer to your PHP manual.

Note:

It is important to note that all Merchants and Service Providers that store, process, or transmit cardholder data
must comply with PCI DSS and the Card Association Compliance Programs. However, certification
requirements vary by business and are contingent upon your "Merchant Level" or "Service Provider Level".
Failure to comply with PCI
DSS and the Card Association Compliance Programs may result in a Merchant being subject to fines, fees or
assessments and/or termination of processing services. Non-compliant solutions may prevent merchants
boarding with Moneris Solutions.

As a Moneris Solutions client or partner using this method of integration, your solution must demonstrate
compliance to the Payment Card Industry Data Security Standard (PCI DSS) and/or the Payment Application
Data Security Standard (PA DSS). These standards are designed to help the cardholders and merchants in
such ways as they ensure credit card numbers are encrypted when transmitted/stored in a database and that
merchants have strong access control measures.

For further information on PCI DSS and PA DSS requirements, please visit http://www.pcisecuritystandards.org.

For more information on how to get your application PCI-DSS compliant, please contact our Integration

Specialists and visit https://developer.moneris.com to download the PCI-DSS Implementation Guide.

eSELECTplus PHP API July 2, 2013

 Page 7 of 46

3. What is the Process I will need to follow?

You will need to follow these steps.

1. Do the required development as outlined in this document
2. Test your solution in the test environment
3. Activate your store

4. Make the necessary changes to move your solution from the test environment into production as
outlined in this document

4. Transaction Types and Transaction Flow

eSELECTplus supports a wide variety of transactions through the API. Below is a list of transactions supported
by the API, other terms used for the transaction type are indicated in brackets.

Purchase – (sale): Purchase transaction verifies funds on the customer’s card, removes the funds and readies
them for deposit into the merchant’s account.

CavvPurchase – (VBV/MCSC sale): CavvPurchase transaction is performed using cavv value obtained by
performing Verified By Visa/MasterCard Securecode transaction on the card .This transaction verifies the
validity of the cavv value, removes the funds and readies them for deposit into the merchant’s account. This
transaction is only applicable to Visa and MasterCard.

PreAuth – (authorisation / preauthorisation): PreAuth transaction verifies and locks funds on the customer’s
credit card. The funds are locked for a specified amount of time, based on the card issuer. To retrieve the
funds from a PreAuth so that they may be settled in the merchant’s account a Capture must be performed. A
PreAuth may only be Captured once. If you don’t intend to capture a PreAuth, you must reverse it by
performing a capture for zero dollar (0.00).

CavvPreAuth – (VBV/MCSC sale): CavvPreAuth transaction is performed using cavv value obtained by
performing Verified By Visa/MasterCard Securecode transaction on the card . This transaction verifies the
validity of the cavv value and locks funds on the customer’s credit card. The funds are locked for a specified
amount of time, based on the card issuer. To retrieve the funds from this CavvPreAuth so that they may be
settled in the merchant’s account a Capture must be performed. A CavvPreAuth may only be captured once.
This transaction is only applicable to Visa and MasterCard.

ReAuth – (reauthorisation): A PreAuth may only be Captured once. If the PreAuth is Captured for less than
the original amount, the ReAuth will allow the merchant to verify and lock the remaining funds on the customer’s
credit card, so they may also be Captured. To retrieve the funds from a ReAuth so that they may be settled in
the merchant’s account, a Capture must be performed. A ReAuth can only be Captured once however if the
Capture was for less than the ReAuth amount, another ReAuth will allow the merchant to verify and lock the
remaining funds on the customer’s credit card, so they may also be Captured.

Capture – (Completion / PreAuth Completion): A PreAuth and a ReAuth can only be captured once. Once a
PreAuth or a ReAuth is obtained the funds that are locked need to be retrieved from the customer’s credit card.
The Capture retrieves the locked funds and readies them for settlement into the merchant’s account. Please
note that the crypt value (ECI indicator) sent in the capture must match the crypt value sent in the original
PreAuth or ReAuth transaction. For CavvPreAuth, the capture cypt type to be used should be determined by the
crypt value or the Cavv result code in the response.

Void – (Correction / Purchase Correction): Purchases and Captures can be voided the same day* that they
occur. A Void must be for the full amount of the transaction and will remove any record of it from the
cardholder’s statement.

Refund – (Credit): A Refund can be performed against a Purchase or a Capture to refund any part, or all of the
transaction.

eSELECTplus PHP API July 2, 2013

 Page 8 of 46

Batch Close – (End of Day / Settlement): When a batch close is performed it takes the monies from all
Purchase, Capture and Refund transactions so they will be deposited or debited the following business day.
For funds to be deposited the following business day the batch must close before 11pm EST.

Open Totals – (Current Batch Report): When an Open Totals is performed it returns the details about the
currently open Batch. This transaction is similar to the Batch Close, though it does not close the Batch for
settlement.

Card Verification – (Account Status Inquiry): Card Verification verifies the validity of the credit card, expiry
date and any additional details, such as the Card Verification Digits or Address Verification details. It does not
verify the available amount or lock any funds on the credit card. This transaction is only applicable for Visa and
MasterCard.

* A Void can be performed against a transaction as long as the batch that contains the original transaction remains open. When using the
automated closing feature Batch Close occurs daily between 10 – 11 pm EST.

eSELECTplus PHP API July 2, 2013

 Page 9 of 46

Process Flow for PreAuth / ReAuth / Capture Transactions

eSELECTplus PHP API July 2, 2013

 Page 10 of 46

5. Transaction Examples

Included below is the sample code that can be found in the “Examples” folder of the PHP API download.

Purchase (basic)

In the purchase example we require several variables (store_id, api_token, order_id, amount, pan, expdate, and
crypt_type). There are also a number of optional fields such as cust_id and dynamic_descriptor available.
Please refer to Appendix A. Definition of Request Fields for variable definitions.

<?php

Example php -q TestPurchase.php store1

require "../mpgClasses.php";

$store_id='store5';

$api_token='yesguy';

$type='purchase';

$cust_id='cust id';

$order_id='ord-'.date("dmy-G:i:s");

$amount='1.00';

$pan='4242424242424242';

$expiry_date='1111';

$crypt='7';

$dynamic_descriptor='123';

$status_check = 'false';

$txnArray=array('type'=>$type,

 'order_id'=>$order_id,

 'cust_id'=>$cust_id,

 'amount'=>$amount,

 'pan'=>$pan,

 'expdate'=>$expiry_date,

 'crypt_type'=>$crypt,

 'dynamic_descriptor'=>$dynamic_descriptor

);

$mpgTxn = new mpgTransaction($txnArray);

$mpgRequest = new mpgRequest($mpgTxn);

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

$mpgResponse=$mpgHttpPost->getMpgResponse();

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

print("\nStatusCode = " . $mpgResponse->getStatusCode());

print("\nStatusMessage = " . $mpgResponse->getStatusMessage());

print("\nIsVisaDebit = " . $mpgResponse->getIsVisaDebit());

?>

eSELECTplus PHP API July 2, 2013

 Page 11 of 46

PreAuth (basic)

The Pre-Auth is similar to the Purchase transaction. The difference between a Purchase and a Pre-Auth is that
with a Purchase the funds will be settled to the bank after the batch has been closed while with a Pre-Auth the
funds are only “reserved” and a second step (a Capture) is required to have the funds deposited to the bank.
Like the Purchase example, PreAuth’s require several variables (store_id, api_token, order_id, amount, pan,
expdate, and crypt_type). There are also optional fields such as cust_id and dynamic_descriptor available.
Please refer to Appendix A. Definition of Request Fields for variable definitions. For a process flow, please refer
to Process Flow for PreAuth / ReAuth / Capture Transactions

A PreAuth transaction must be reversed within 72hrs if it is not to be captured (e.g. due to cancellation of order,
error in order, or not able to fulfil). To reverse an authorization, please refer to the Capture transaction

<?php

This program takes 3 arguments from the command line:

1. Store id

2. api token

3. order id

Example php -q TestPreAuth.php store1 yesguy

require "../mpgClasses.php";

$store_id="store5";

$api_token="yesguy";

step 1) create transaction hash ###

$txnArray=array('type'=>'preauth',

 'order_id'=>'ord-'.date("dmy-G:i:s"),

 'cust_id'=>'my cust id',

 'amount'=>'1.00',

 'pan'=>'4242424242424242',

 'expdate'=>'0806',

 'crypt_type'=>'7',

 'dynamic_descriptor'=>'123456'

);

step 2) create a transaction object passing the hash created in

step 1.

$mpgTxn = new mpgTransaction($txnArray);

step 3) create a mpgRequest object passing the transaction object created

in step 2

$mpgRequest = new mpgRequest($mpgTxn);

step 4) create mpgHttpsPost object which does an https post ##

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

step 5) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

step 6) retrieve data using get methods

print("\nCardType = " . $mpgResponse->getCardType()."
");

print("\nTransAmount = " . $mpgResponse->getTransAmount()."
");

print("\nTxnNumber = " . $mpgResponse->getTxnNumber()."
");

print("\nReceiptId = " . $mpgResponse->getReceiptId()."
");

print("\nTransType = " . $mpgResponse->getTransType()."
");

print("\nReferenceNum = " . $mpgResponse->getReferenceNum()."
");

print("\nResponseCode = " . $mpgResponse->getResponseCode()."
");

print("\nISO = " . $mpgResponse->getISO()."
");

print("\nMessage = " . $mpgResponse->getMessage()."
");

print("\nAuthCode = " . $mpgResponse->getAuthCode()."
");

print("\nComplete = " . $mpgResponse->getComplete()."
");

print("\nTransDate = " . $mpgResponse->getTransDate()."
");

print("\nTransTime = " . $mpgResponse->getTransTime()."
");

print("\nTicket = " . $mpgResponse->getTicket()."
");

print("\nTimedOut = " . $mpgResponse->getTimedOut()."
");

print("\nIsVisaDebit = " . $mpgResponse->getIsVisaDebit());

?>

eSELECTplus PHP API July 2, 2013

 Page 12 of 46

ReAuth

The ReAuth is similar to the PreAuth with the addition of the ‘original_order_id’ with the exception of the
transaction type. It is ‘ReAuth’ instead of ‘PreAuth’. Like the PreAuth example, ReAuth’s require several
variables (store_id, api_token, order_id, amount, orig_order_id, txn_number, and crypt). There are also optional
fields such as cust_id and dynamic_descriptor available. Please refer to Appendix A. Definition of Request
Fields for variable definitions.

Please note, a PreAuth may only be Captured once for less than, equal to, or greater than the original PreAuth
amount. If the PreAuth is captured for less than its total amount, then a ReAuth is first required to be able to
capture the remainder. The ReAuth references the original transaction by the orig_order_id and will only allow
the merchant to re-authorize funds on the credit card used in the original transaction for no more than the
upcaptured amount. For a process flow, please refer to Process Flow for PreAuth / ReAuth / Capture
Transactions

import java.io.*;

import java.util.*;

import java.net.*;

import JavaAPI.*;

public class TestReAuth

{

 public static void main(String args[]) throws IOException

 {

 String host = "esqa.moneris.com";

 String store_id = "moneris";

 String api_token = "hurgle";

 String order_id; // will prompt for user inputs

 String cust_id = "Hilton_1";

 String amount = "1.00";

 String orig_order_id = "apr18test9";

 String txn_number = "59067-0_10";

 String crypt = "7";

 //String dynamic_descriptor = "123456";

 InputStreamReader isr = new InputStreamReader(System.in);

 BufferedReader stdin = new BufferedReader(isr);

 System.out.print("Please enter an order ID: ");

 order_id = stdin.readLine();

 ReAuth r = new ReAuth (order_id, cust_id, amount, orig_order_id, txn_number, crypt);

 //r.setDynamicDescriptor(dynamic_descriptor);

 HttpsPostRequest mpgReq = new HttpsPostRequest(host, store_id, api_token, r);

 try

 {

 Receipt receipt = mpgReq.getReceipt();

 System.out.println("CardType = " + receipt.getCardType());

 System.out.println("TransAmount = " + receipt.getTransAmount());

 System.out.println("TxnNumber = " + receipt.getTxnNumber());

 System.out.println("ReceiptId = " + receipt.getReceiptId());

 System.out.println("TransType = " + receipt.getTransType());

 System.out.println("ReferenceNum = " + receipt.getReferenceNum());

 System.out.println("ResponseCode = " + receipt.getResponseCode());

 System.out.println("BankTotals = " + receipt.getBankTotals());

 System.out.println("Message = " + receipt.getMessage());

 System.out.println("AuthCode = " + receipt.getAuthCode());

 System.out.println("Complete = " + receipt.getComplete());

 System.out.println("TransDate = " + receipt.getTransDate());

 System.out.println("TransTime = " + receipt.getTransTime());

 System.out.println("Ticket = " + receipt.getTicket());

 System.out.println("TimedOut = " + receipt.getTimedOut());

 System.out.println("IsVisaDebit = " + receipt.getIsVisaDebit());

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 } } // end TestReAuth

eSELECTplus PHP API July 2, 2013

 Page 13 of 46

Capture

The Capture (Completion) transaction is used to secure the funds locked by a PreAuth transaction. When
sending a ‘completion’ request you will need two pieces of information from the original PreAuth – the order_id
and the txn_number from the returned response. For PreAuth/Capture payment model where full or partial
Captures may be used, please use the Capture with the setShipIndicator function (example in Section 6).

To reverse the full amount of the PreAuth, please use the Capture transaction with a dollar amount of “0.00”.

<?php

This program takes 4 arguments from the command line:

1. Store id

2. api token

3. order id

4. trans number

Example php -q TestCompletion.php store1 yesguy original_order_id 76452-66-0

require "../mpgClasses.php";

$store_id=$argv[1];

$api_token=$argv[2];

$orderid=$argv[3];

$txnnumber=$argv[4];

$compamount=$argv[5];

step 1) create transaction array ###

$txnArray=array('type'=>'completion',

 'txn_number'=>$txnnumber,

 'order_id'=>$orderid,

 'comp_amount'=>$compamount,

 'crypt_type'=>'7',

 'dynamic_descriptor'=>'123456'

);

step 2) create a transaction object passing the hash created in

$mpgTxn = new mpgTransaction($txnArray);

step 3) create a mpgRequest object passing the transaction object created

$mpgRequest = new mpgRequest($mpgTxn);

step 4) create mpgHttpsPost object which does an https post ##

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

step 5) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

step 6) retrieve data using get methods

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

NOTE

The crypt value (ECI indicator) sent in the capture must match the crypt value sent in the original
PreAuth or ReAuth transaction. For CavvPreAuth, the capture cypt type to be used should be
determined by the crypt value or the Cavv result code in the response

eSELECTplus PHP API July 2, 2013

 Page 14 of 46

Void

The Void (PurchaseCorrection) transaction is used to cancel a transaction that was performed in the current
batch. No amount is required because a Void is always for 100% of the original transaction. The only
transactions that can be Voided are Captures and Purchases. To send a ‘PurchaseCorrection’ the order_id and
txn_number from the Capture or Purchase are required. If your PreAuth/Capture payment model utilizes the
setShipIndicator function, please use the Void model that utilizes the setShipIndicator function (example in
Section 6).

<?php

This program takes 4 arguments from the command line:

1. Store id

2. api token

3. order id

4. trans number

Example php -q TestPurchaseCorrection.php store1 yesguy my_order_id 76452-77-0

require "../mpgClasses.php";

$store_id=$argv[1];

$api_token=$argv[2];

$orderid=$argv[3];

$txnnumber=$argv[4];

step 1) create transaction hash ###

$txnArray=array('type'=>'purchasecorrection',

 'txn_number'=>$txnnumber,

 'order_id'=>$orderid,

 'crypt_type'=>'7',

 'dynamic_descriptor'=>'123456'

);

step 2) create a transaction object passing the array created in

step 1.

$mpgTxn = new mpgTransaction($txnArray);

step 3) create a mpgRequest object passing the transaction object created

in step 2

$mpgRequest = new mpgRequest($mpgTxn);

step 4) create mpgHttpsPost object which does an https post ##

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

step 5) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

step 6) retrieve data using get methods

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

eSELECTplus PHP API July 2, 2013

 Page 15 of 46

Refund

The Refund will credit a specified amount to the cardholder’s credit card. A Refund can be sent up to the full
value of the original Capture or Purchase. To send a ‘refund’ you will require the order_id and txn_number from
the original Capture or Purchase.

<?php

This program takes 4 arguments from the command line:

1. Store id

2. api token

3. order id

4. trans number

Example php -q TestRefund.php store1 yesguy my_order_id 45109-89-0

require "../mpgClasses.php";

$store_id=$argv[1];

$api_token=$argv[2];

$orderid=$argv[3];

$txnnumber=$argv[4];

step 1) create transaction array ###

$txnArray=array('type'=>'refund',

 'txn_number'=>$txnnumber,

 'order_id'=>$orderid,

 'amount'=>'1.00',

 'crypt_type'=>'7',

 'dynamic_descriptor'=>'123456'

);

step 2) create a transaction object passing the array created in

step 1.

$mpgTxn = new mpgTransaction($txnArray);

step 3) create a mpgRequest object passing the transaction object created

in step 2

$mpgRequest = new mpgRequest($mpgTxn);

step 4) create mpgHttpsPost object which does an https post ##

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

step 5) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

step 6) retrieve data using get methods

print ("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

eSELECTplus PHP API July 2, 2013

 Page 16 of 46

Independent Refund

The Independent Refund (ind_refund) will credit a specified amount to the cardholder’s credit card. The
Independent Refund does not require an existing order to be logged in the eSELECTplus gateway; however,
the credit card number and expiry date will need to be passed. The Independent Refund transaction requires
several variables (store_id, api_token, order_id, amount, pan, expdate, and crypt_type). There are also a
number of optional fields such as cust_id and dynamic_descriptor available. The transaction format is almost
identical to a Purchase or a PreAuth.

<?php

This program takes 3 arguments from the command line:

1. Store id

2. api token

3. order id

Example php -q TestIndependentRefund.php store1 yesguy unique_order_id

require "../mpgClasses.php";

$store_id='store5';

$api_token='yesguy';

$orderid='ord-'.date("dmy-G:i:s");

step 1) create transaction array ###

$txnArray=array('type'=>'ind_refund',

 'order_id'=>$orderid,

 'cust_id'=>'my cust id',

 'amount'=>'1.00',

 'pan'=>'4242424242424242',

 'expdate'=>'1103',

 'crypt_type'=>'7',

 'dynamic_descriptor'=>'123456'

);

step 2) create a transaction object passing the array created in

step 1.

$mpgTxn = new mpgTransaction($txnArray);

step 3) create a mpgRequest object passing the transaction object created

in step 2

$mpgRequest = new mpgRequest($mpgTxn);

step 4) create mpgHttpsPost object which does an https post ##

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

step 5) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

step 6) retrieve data using get methods

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

eSELECTplus PHP API July 2, 2013

 Page 17 of 46

Batch Close

At the end of every day (11pm EST) the Batch needs to be closed in order to have the funds settled the next
business day. By default eSELECTplus will close your Batch automatically for you daily whenever there are
funds in the open Batch. Some merchants prefer to control Batch Close, and disable the automatic
functionality. For these merchants we have provided the ability to close your Batch through the API. When a
Batch is closed the response will include the transaction count and amount for each type of transaction for each
type of card. To disable automatic close you will need to call the technical support line.

<?php

This program takes 3 arguments from the command line:

1. Store id

2. api token

3. ecr number

Example php -q TestBatchClose.php store1 yesguy 66002173

require "../mpgClasses.php";

$store_id='store5';

$api_token='yesguy';

$ecr_number='66002163';

step 1) create transaction array ###

$txnArray=array('type'=>'batchclose',

 'ecr_number'=>$ecr_number

);

$mpgTxn = new mpgTransaction($txnArray);

step 2) create mpgRequest object ###

$mpgReq=new mpgRequest($mpgTxn);

step 3) create mpgHttpsPost object which does an https post ##

$mpgHttpPost=new mpgHttpsPost($store_id,$api_token,$mpgReq);

step 4) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

##step 5) get array of all credit cards

$creditCards = $mpgResponse->getCreditCards($ecr_number);

step 6) loop through the array of credit cards and get information

for($i=0; $i < count($creditCards); $i++)

 {

 print "\nCard Type = $creditCards[$i]
";

 print "\nPurchase Count = "

 . $mpgResponse->getPurchaseCount($ecr_number,$creditCards[$i])."
";

 print "\nPurchase Amount = "

 . $mpgResponse->getPurchaseAmount($ecr_number,$creditCards[$i])."
";

 print "\nRefund Count = "

 . $mpgResponse->getRefundCount($ecr_number,$creditCards[$i])."
";

 print "\nRefund Amount = "

 . $mpgResponse->getRefundAmount($ecr_number,$creditCards[$i])."
";

 print "\nCorrection Count = "

 . $mpgResponse->getCorrectionCount($ecr_number,$creditCards[$i])."
";

 print "\nCorrection Amount = "

 . $mpgResponse->getCorrectionAmount($ecr_number,$creditCards[$i])."
";

 }

?>

eSELECTplus PHP API July 2, 2013

 Page 18 of 46

Open Totals

Open Totals allows the merchant to retrieve details about all Credit Card transactions within the currently open
Batch. The response will include the transaction count and amount for each type of transaction. Open Totals
returns a similar response to the Batch Close without closing the current Batch.

<?php

This program takes 3 arguments from the command line:

1. Store id

2. api token

3. ecr number

Example php -q TestOpenTotals.php store1 yesguy 66002163

require "../mpgClasses.php";

$store_id='store5';

$api_token='yesguy';

$ecr_number='66002163';

step 1) create transaction array ###

$txnArray=array('type'=>'opentotals',

 'ecr_number'=>$ecr_number

);

$mpgTxn = new mpgTransaction($txnArray);

step 2) create mpgRequest object ###

$mpgReq=new mpgRequest($mpgTxn);

step 3) create mpgHttpsPost object which does an https post ##

$mpgHttpPost=new mpgHttpsPost($store_id,$api_token,$mpgReq);

step 4) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

##step 5) get array of all credit cards

$creditCards = $mpgResponse->getCreditCards($ecr_number);

step 6) loop through the array of credit cards and get information

for($i=0; $i < count($creditCards); $i++)

 {

 print "\nCard Type = $creditCards[$i]";

 print "\nPurchase Count = "

 . $mpgResponse->getPurchaseCount($ecr_number,$creditCards[$i]);

 print "\nPurchase Amount = "

 . $mpgResponse->getPurchaseAmount($ecr_number,$creditCards[$i]);

 print "\nRefund Count = "

 . $mpgResponse->getRefundCount($ecr_number,$creditCards[$i]);

 print "\nRefund Amount = "

 . $mpgResponse->getRefundAmount($ecr_number,$creditCards[$i]);

 print "\nCorrection Count = "

 . $mpgResponse->getCorrectionCount($ecr_number,$creditCards[$i]);

 print "\nCorrection Amount = "

 . $mpgResponse->getCorrectionAmount($ecr_number,$creditCards[$i]);

 }

?>

eSELECTplus PHP API July 2, 2013

 Page 19 of 46

Card Verification

The Card Verification (CardVerification) transaction is available to check the validity of a credit card, expiry date
and any additional details, such as the Card Verification Digits or Address Verification details. It does not verify
the available amount or lock any funds on the credit card. The CardVerification transaction requires several
variables (store_id, api_token, order_id, pan, expiry_date). Also, Address Verification (AVS) and Card
Verification Digits (CVD) are optional. This transaction type will not place a charge on the credit card. Please
refer to Appendix A. Definition of Request Fields for variable definitions.

<?php

require "../mpgClasses.php";

$store_id="store5";

$api_token="yesguy";

step 1) create transaction hash ###

$txnArray=array('type'=>'card_verification',

 'order_id'=>'ord-'.date("dmy-G:i:s"),

 'cust_id'=>'my cust id',

 'pan'=>'4242424242424242',

 'expdate'=>'1212',

 'crypt_type'=>'7'

);

step 2) create a transaction object passing the hash created in

$mpgTxn = new mpgTransaction($txnArray);

step 3) create a mpgRequest object passing the transaction object created

in step 2

$mpgRequest = new mpgRequest($mpgTxn);

step 4) create mpgHttpsPost object which does an https post ##

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

step 5) get an mpgResponse object ##

$mpgResponse=$mpgHttpPost->getMpgResponse();

step 6) retrieve data using get methods

print("\nCardType = " . $mpgResponse->getCardType()."
");

print("\nTransAmount = " . $mpgResponse->getTransAmount()."
");

print("\nTxnNumber = " . $mpgResponse->getTxnNumber()."
");

print("\nReceiptId = " . $mpgResponse->getReceiptId()."
");

print("\nTransType = " . $mpgResponse->getTransType()."
");

print("\nReferenceNum = " . $mpgResponse->getReferenceNum()."
");

print("\nResponseCode = " . $mpgResponse->getResponseCode()."
");

print("\nISO = " . $mpgResponse->getISO()."
");

print("\nMessage = " . $mpgResponse->getMessage()."
");

print("\nAuthCode = " . $mpgResponse->getAuthCode()."
");

print("\nComplete = " . $mpgResponse->getComplete()."
");

print("\nTransDate = " . $mpgResponse->getTransDate()."
");

print("\nTransTime = " . $mpgResponse->getTransTime()."
");

print("\nTicket = " . $mpgResponse->getTicket()."
");

print("\nTimedOut = " . $mpgResponse->getTimedOut()."
");

?>

NOTE

Card Verification transaction is only applicable to Visa and MasterCard

eSELECTplus PHP API July 2, 2013

 Page 20 of 46

6. Transaction with Extra features - Examples

In the previous section the instructions were provided for the basic transaction set. eSELECTplus also provides
several extra features/functionalities. These features include storing customer and order details, Verified by
Visa and sending transactions to the Recurring Billing feature. Verified by Visa and Recurring Billing must be
added to your account, please call the Service Centre at 1 866 319 7450 to have your profile updated.

Purchase (with Customer and Order details)

Below is an example of sending a Purchase with the customer and order details. If one piece of information is
sent then all fields must be included in the request. Unwanted fields need to be blank. The identical format is
used for PreAuth with the exception of transaction type which changes from ‘purchase’ to ‘preauth’. Customer
details can only be sent with Purchase and PreAuth. It can be used in conjunction with other extra features
such as VBV and Recurring Billing. Please note that the mpgCustInfo fields are not used for any type of
address verification or fraud check.

<?php

Example php -q TestPurchase-CustInfo.php

require "../mpgClasses.php";

/************************ Request Variables ***************************/

$store_id='store5';

$api_token='yesguy';

/********************* Transactional Variables ************************/

$type='purchase';

$order_id='ord-'.date("dmy-G:i:s");

$cust_id='my cust id';

$amount='1.00';

$pan='4242424242424242';

$expiry_date='0812'; //December 2008

$crypt='7';

/******************* Customer Information Variables ********************/

$first_name = 'Cedric';

$last_name = 'Benson';

$company_name = 'Chicago Bears';

$address = '334 Michigan Ave';

$city = 'Chicago';

$province = 'Illinois';

$postal_code = 'M1M1M1';

$country = 'United States';

$phone_number = '453-989-9876';

$fax = '453-989-9877';

$tax1 = '1.01';

$tax2 = '1.02';

$tax3 = '1.03';

$shipping_cost = '9.95';

$email ='Joe@widgets.com';

$instructions ="Make it fast";

/*********************** Line Item Variables **************************/

$item_name[0] = 'Guy Lafleur Retro Jersey';

$item_quantity[0] = '1';

$item_product_code[0] = 'JRSCDA344';

$item_extended_amount[0] = '129.99';

$item_name[1] = 'Patrick Roy Signed Koho Stick';

$item_quantity[1] = '1';

$item_product_code[1] = 'JPREEA344';

$item_extended_amount[1] = '59.99';

eSELECTplus PHP API July 2, 2013

 Page 21 of 46

/******************** Customer Information Object *********************/

$mpgCustInfo = new mpgCustInfo();

/********************** Set Customer Information **********************/

$billing = array(

 'first_name' => $first_name,

 'last_name' => $last_name,

 'company_name' => $company_name,

 'address' => $address,

 'city' => $city,

 'province' => $province,

 'postal_code' => $postal_code,

 'country' => $country,

 'phone_number' => $phone_number,

 'fax' => $fax,

 'tax1' => $tax1,

 'tax2' => $tax2,

 'tax3' => $tax3,

 'shipping_cost' => $shipping_cost

);

$mpgCustInfo->setBilling($billing);

$shipping = array(

 'first_name' => $first_name,

 'last_name' => $last_name,

 'company_name' => $company_name,

 'address' => $address,

 'city' => $city,

 'province' => $province,

 'postal_code' => $postal_code,

 'country' => $country,

 'phone_number' => $phone_number,

 'fax' => $fax,

 'tax1' => $tax1,

 'tax2' => $tax2,

 'tax3' => $tax3,

 'shipping_cost' => $shipping_cost

);

$mpgCustInfo->setShipping($shipping);

$mpgCustInfo->setEmail($email);

$mpgCustInfo->setInstructions($instructions);

/*********************** Set Line Item Information *********************/

$item[0] = array(

 'name'=>$item_name[0],

 'quantity'=>$item_quantity[0],

 'product_code'=>$item_product_code[0],

 'extended_amount'=>$item_extended_amount[0]

);

$item[1] = array(

 'name'=>$item_name[1],

 'quantity'=>$item_quantity[1],

 'product_code'=>$item_product_code[1],

 'extended_amount'=>$item_extended_amount[1]

);

$mpgCustInfo->setItems($item[0]);

$mpgCustInfo->setItems($item[1]);

/***************** Transactional Associative Array ********************/

$txnArray=array(

 'type'=>$type,

 'order_id'=>$order_id,

 'cust_id'=>$cust_id,

eSELECTplus PHP API July 2, 2013

 Page 22 of 46

 'amount'=>$amount,

 'pan'=>$pan,

 'expdate'=>$expiry_date,

 'crypt_type'=>$crypt

);

/********************** Transaction Object ****************************/

$mpgTxn = new mpgTransaction($txnArray);

/******************** Set Customer Information ************************/

$mpgTxn->setCustInfo($mpgCustInfo);

/************************* Request Object *****************************/

$mpgRequest = new mpgRequest($mpgTxn);

/************************ HTTPS Post Object ***************************/

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

/****************8********** Response *********************************/

$mpgResponse=$mpgHttpPost->getMpgResponse();

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

eSELECTplus PHP API July 2, 2013

 Page 23 of 46

CavvPurchase (Purchase with Verified by Visa – VBV or MasterCard SecureCode - MCSC)

Below is an example of sending a Purchase with the Verified by Visa extra fields. The ‘cavv’ is obtained by
using either the Moneris MPI or a third party MPI. The format outlined below is identical for a PreAuth with the
exception of the TransType which changes from ‘cavv_purchase’ to ‘cavv_preauth’. VBV must be added to
your account, please call the Service Centre at 1-866-319-7450 to have your profile updated. The optional
customer and order details can be included in the transaction using steps 1, 2 and 5 from the method above -
Purchase (with Customer and Order Details).

<?php

Example php -q TestPurchase-VBV.php "moneris" store

require "../mpgClasses.php";

$store_id='store5';

$api_token='yesguy';

$type='cavv_purchase';

$order_id='ord-'.date("dmy-G:i:s");

$cust_id='CUST887763';

$amount='10.00';

$pan="4242424242424242";

$expiry_date="0812";

$cavv='AAABBJg0VhI0VniQEjRWAAAAAAA=';

$txnArray=array('type'=>$type,

 'order_id'=>$order_id,

 'cust_id'=>$cust_id,

 'amount'=>$amount,

 'pan'=>$pan,

 'expdate'=>$expiry_date,

 'cavv'=>$cavv,

 'dynamic_descriptor'=>'123456'

);

$mpgTxn = new mpgTransaction($txnArray);

$mpgRequest = new mpgRequest($mpgTxn);

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

$mpgResponse=$mpgHttpPost->getMpgResponse();

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

print("\nCavvResultCode = " . $mpgResponse->getCavvResultCode());

print("\nIsVisaDebit = " . $mpgResponse->getIsVisaDebit());

?>

eSELECTplus PHP API July 2, 2013

 Page 24 of 46

Purchase (with Recurring Billing)

Recurring Billing is a feature that allows the transaction information to be sent once and then re-billed on a
specified interval for a certain number of times. This is a feature commonly used for memberships,
subscriptions, or any other charge that is re-billed on a regular basis. The transaction is split into two parts; the
recur information and the transaction information. Please see Appendix D. Recur Fields for description of each
of the fields. The optional customer and order details can be included in the transaction using steps 1, 2 and 5
from the method above -Purchase (with Customer and Order Details). Recurring Billing must be added to your
account, please call the Service Centre at 1 866 319 7450 to have your profile updated.

<?php

Example php -q TestPurchase-Recur.php store3 yesguy unique_order_id

require "../mpgClasses.php";

/**************************** Request Variables *******************************/

$store_id = 'store5';

$api_token = 'yesguy';

/********************************* Recur Variables ****************************/

$recurUnit = 'eom';

$startDate = '2008/11/30';

$numRecurs = '4';

$recurInterval = '10';

$recurAmount = '31.00';

$startNow = 'true';

/************************* Transactional Variables ****************************/

$orderId = 'ord-'.date("dmy-G:i:s");

$custId = 'student_number';

$creditCard = '5454545454545454';

$nowAmount = '10.00';

$expiryDate = '0912';

$cryptType = '7';

/*********************** Recur Associative Array **********************/

$recurArray = array('recur_unit'=>$recurUnit, // (day | week | month)

 'start_date'=>$startDate, //yyyy/mm/dd

 'num_recurs'=>$numRecurs,

 'start_now'=>$startNow,

 'period' => $recurInterval,

 'recur_amount'=> $recurAmount

);

$mpgRecur = new mpgRecur($recurArray);

/*********************** Transactional Associative Array **********************/

$txnArray=array('type'=>'purchase',

 'order_id'=>$orderId,

 'cust_id'=>$custId,

 'amount'=>$nowAmount,

 'pan'=>$creditCard,

 'expdate'=>$expiryDate,

 'crypt_type'=>$cryptType

);

/**************************** Transaction Object *****************************/

$mpgTxn = new mpgTransaction($txnArray);

/****************************** Recur Object *********************************/

eSELECTplus PHP API July 2, 2013

 Page 25 of 46

$mpgTxn->setRecur($mpgRecur);

/****************************** Request Object *******************************/

$mpgRequest = new mpgRequest($mpgTxn);

/***************************** HTTPS Post Object *****************************/

$mpgHttpPost = new mpgHttpsPost($store_id,$api_token,$mpgRequest);

/******************************* Response ************************************/

$mpgResponse=$mpgHttpPost->getMpgResponse();

print ("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

print("\nRecurSuccess = " . $mpgResponse->getRecurSuccess());

?>

As part of the Recurring Billing response there will be an additional method called getRecurSuccess(). This
can return a value of ‘true’ or ‘false’ based on whether the recurring transaction was successfully registered in
our database.

eSELECTplus PHP API July 2, 2013

 Page 26 of 46

Recur Update

Recur Update allows a user to alter characteristics of a previously registered Recurring Billing transaction. This
feature is commonly used to update customer’s credit card information and the number of recurs to the account.
Please see Appendix A. Definition of Request Fields and Appendix D. Recur Fields for description of each of
the fields.
Recurring Billing must be added to your account, please call the Service Centre at 1 866-319-7450 to have your
profile updated.

<?php

Example php -q TestRecurUpdate.php store1

require "../mpgClasses.php";

/**************************** Request Variables *******************************/

$store_id='store5';

$api_token='yesguy';

/************************* Transactional Variables ****************************/

$type='recur_update';

$cust_id='my cust id';

$order_id='test310707';

$recur_amount='1.00';

$pan='4242424242424242';

$expiry_date='1111';

$add_num='20';

$total_num='999';

$hold = 'false';

$terminate = 'false';

/*********************** Transactional Associative Array **********************/

$txnArray=array('type'=>$type,

 'order_id'=>$order_id,

 'cust_id'=>$cust_id,

 'recur_amount'=>$recur_amount,

 'pan'=>$pan,

 'expdate'=>$expiry_date,

 'add_num_recurs' => $add_num,

 'total_num_recurs' => $total_num,

 'hold' => $hold,

 'terminate' => $terminate

);

/**************************** Transaction Object *****************************/

$mpgTxn = new mpgTransaction($txnArray);

/****************************** Request Object *******************************/

$mpgRequest = new mpgRequest($mpgTxn);

/***************************** HTTPS Post Object *****************************/

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

/******************************* Response ************************************/

$mpgResponse=$mpgHttpPost->getMpgResponse();

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

print("\nRecurUpdateSuccess = " . $mpgResponse->getRecurUpdateSuccess());

print("\nNextRecurDate = " . $mpgResponse->getNextRecurDate());

print("\nRecurEndDate = " . $mpgResponse->getRecurEndDate());

?>

As part of the Recurring Billing update response there will be an additional method called

getRecurUpdateSuccess(). This can return a value of ‘true’ or ‘false’ based on whether the recurring

transaction was successfully updated in our database

eSELECTplus PHP API July 2, 2013

 Page 27 of 46

Purchase with CVD and AVS (eFraud)

Below is an example of a Purchase transaction with CVD and AVS information. These values can be sent in
conjunction with other additional variables such as Recurring Billing or customer information. With this feature
enabled in your merchant profile, you will be able to pass in these fields for the following transactions
‘purchase’, ‘preauth’, ‘cavv_purchase’, and ‘cavv_preauth’. To have the eFraud feature added to your profile,
please call the Service Center at 1-866-319-7450 to have your profile updated.

When testing eFraud (AVS and CVD) you must only use the Visa test card numbers, 4242424242424242 or
4005554444444403, and the amounts described in the Simulator eFraud Response Codes document available at
https://developer.moneris.com.

<?php

This program takes 3 arguments from the command line:

1. Store id

2. api token

3. order id

Example php -q TestPurchase-Efraud.php store1 45728773 45109

require "../mpgClasses.php";

/************************ Request Variables ***************************/

$store_id='store5';

$api_token='yesguy';

/********************* Transactional Variables ************************/

$type='purchase';

$order_id='ord-'.date("dmy-G:i:s");

$cust_id='my cust id';

$amount='10.30';

$pan='4242424242424242';

$expiry_date='0812'; //December 2008

$crypt='7';

/************************** AVS Variables *****************************/

$avs_street_number = '201';

$avs_street_name = 'Michigan Ave';

$avs_zipcode = 'M1M1M1';

$avs_email = 'test@host.com';

$avs_hostname = 'www.testhost.com';

$avs_browser = 'Mozilla';

$avs_shiptocountry = 'Canada';

$avs_merchprodsku = '123456';

$avs_custip = '192.168.0.1';

$avs_custphone = '5556667777';

/************************** CVD Variables *****************************/

$cvd_indicator = '1';

$cvd_value = '198';

/********************** AVS Associative Array *************************/

$avsTemplate = array('avs_street_number'=>$avs_street_number,

 'avs_street_name' =>$avs_street_name,

 'avs_zipcode' => $avs_zipcode,

 'avs_hostname'=>$avs_hostname,

 'avs_browser' =>$avs_browser,

 'avs_shiptocountry' => $avs_shiptocountry,

NOTE

The CVD Value supplied by the cardholder should simply be passed to the eSelectPlus payment gateway.
Under no circumstances should it be stored for subsequent uses or displayed as part of the receipt
information.

eSELECTplus PHP API July 2, 2013

 Page 28 of 46

 'avs_merchprodsku' => $avs_merchprodsku,

 'avs_custip'=>$avs_custip,

 'avs_custphone' => $avs_custphone

);

/********************** CVD Associative Array *************************/

$cvdTemplate = array('cvd_indicator' => $cvd_indicator,

 'cvd_value' => $cvd_value

);

/************************** AVS Object ********************************/

$mpgAvsInfo = new mpgAvsInfo ($avsTemplate);

/************************** CVD Object ********************************/

$mpgCvdInfo = new mpgCvdInfo ($cvdTemplate);

/***************** Transactional Associative Array ********************/

$txnArray=array('type'=>$type,

 'order_id'=>$order_id,

 'cust_id'=>$cust_id,

 'amount'=>$amount,

 'pan'=>$pan,

 'expdate'=>$expiry_date,

 'crypt_type'=>$crypt

);

/********************** Transaction Object ****************************/

$mpgTxn = new mpgTransaction($txnArray);

/************************ Set AVS and CVD *****************************/

$mpgTxn->setAvsInfo($mpgAvsInfo);

$mpgTxn->setCvdInfo($mpgCvdInfo);

/************************ Request Object ******************************/

$mpgRequest = new mpgRequest($mpgTxn);

/*********************** HTTPS Post Object ****************************/

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

/*************************** Response *********************************/

$mpgResponse=$mpgHttpPost->getMpgResponse();

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

print("\nAVSResponse = " . $mpgResponse->getAvsResultCode());
print("\nCVDResponse = " . $mpgResponse->getCvdResultCode());

print("\nITDResponse = " . $mpgResponse->getITDResponse());

?>

eSELECTplus PHP API July 2, 2013

 Page 29 of 46

Purchase with Status Check

The Status Check (SC) flag is set to true or false at the request level as opposed to being at the transaction
level. You should send the same parameter values for the transaction level fields in the SC request, i.e. if you
send a Completion with SC, include the same values as the original Completion such as the Order ID, amount,
Txn number, etc. What you will get back is a SC and Status Message in the Receipt as shown in the sample.
A Status Code (SC) of 0-49 indicates successful and 50-999 is not successful. The Status Message will be
Found (SC of 0-49) or Not Found or null (SC of 50-999). When it is found, the other Response parameter in the
Receipt values will be those of the original transaction. When it is not found, they will be null

Below is an example of a Purchase transaction with Status Check. The same parameter values for the original
transaction should be sent in the Status Check request, i.e. if you send a purchase with Status Check, include
the same values as the original Purchase such as the store_id, api_token, order_id, amount, pan, expdate,
crypt_type and status. Please refer to Appendix A. Definition of Request Fields for variable definitions.

With this feature enabled in your merchant profile, you will be able to pass in the Status Check flag for the
following transactions: ‘Purchase’, ‘Refund’, ‘IndependentRefund’, ‘PreAuth’, ‘Completion’,
‘PurchaseCorrection’. To have the Status Check feature added to your profile, please call the Service Centre at
1-866-319-7450 to have your profile updated.

<?php

Example php -q TestPurchase.php store1

require "../mpgClasses.php";

/**************************** Request Variables *******************************/

$store_id='store5';

$api_token='yesguy';

/************************* Transactional Variables ****************************/

$type='purchase';

$cust_id='cust id';

$order_id='ord-'.date("dmy-G:i:s");

$amount='1.00';

$pan='4242424242424242';

$expiry_date='1111';

$crypt='7';

$status_check = 'false';

/*********************** Transactional Associative Array **********************/

$txnArray=array('type'=>$type,

 'order_id'=>$order_id,

 'cust_id'=>$cust_id,

 'amount'=>$amount,

 'pan'=>$pan,

 'expdate'=>$expiry_date,

 'crypt_type'=>$crypt,

);

/**************************** Transaction Object *****************************/

$mpgTxn = new mpgTransaction($txnArray);

/****************************** Request Object *******************************/

$mpgRequest = new mpgRequest($mpgTxn);

/***************************** HTTPS Post Object *****************************/

NOTE

The Status Check request should only be used once and immediately (within 2 minutes) after the last
transaction that had failed.

The Status Check request should not be used to check openTotals & batchClose requests.

Do not resend the Status Check request if it has timed out as additional investigation is required.

eSELECTplus PHP API July 2, 2013

 Page 30 of 46

/* Status Check Example

$mpgHttpPost =new mpgHttpsPostStatus($store_id,$api_token,$status_check,$mpgRequest);

*/

$mpgHttpPost =new mpgHttpsPost($store_id,$api_token,$mpgRequest);

/******************************* Response ************************************/

$mpgResponse=$mpgHttpPost->getMpgResponse();

print("\nCardType = " . $mpgResponse->getCardType());

print("\nTransAmount = " . $mpgResponse->getTransAmount());

print("\nTxnNumber = " . $mpgResponse->getTxnNumber());

print("\nReceiptId = " . $mpgResponse->getReceiptId());

print("\nTransType = " . $mpgResponse->getTransType());

print("\nReferenceNum = " . $mpgResponse->getReferenceNum());

print("\nResponseCode = " . $mpgResponse->getResponseCode());

print("\nISO = " . $mpgResponse->getISO());

print("\nMessage = " . $mpgResponse->getMessage());

print("\nAuthCode = " . $mpgResponse->getAuthCode());

print("\nComplete = " . $mpgResponse->getComplete());

print("\nTransDate = " . $mpgResponse->getTransDate());

print("\nTransTime = " . $mpgResponse->getTransTime());

print("\nTicket = " . $mpgResponse->getTicket());

print("\nTimedOut = " . $mpgResponse->getTimedOut());

print("\nStatusCode = " . $mpgResponse->getStatusCode());

print("\nStatusMessage = " . $mpgResponse->getStatusMessage());

?>

As part of the Status Check response there will be two additional methods called getStatusCode() and
getStatusMessage(). Please refer to Appendix B. Definitions of Response Fields.

eSELECTplus PHP API July 2, 2013

 Page 31 of 46

7. What Information will I get as a Response to My Transaction Request?

For each transaction you will receive a response message. For a full description of each field please refer to
Appendix B. Definitions of Response Fields

To determine whether a transaction is successful or not the field that must be checked is ResponseCode. See
the table below to determine the transaction result.

Response Code Result

0 – 49 (inclusive) Approved

50 – 999 (inclusive) Declined

Null Incomplete

For a full list of response codes and the associated message please refer to the Response Code document

available for download at https://developer.moneris.com.

8. How Do I Test My Solution?

A testing environment is available for you to connect to while you are integrating your site to our payment
gateway. The test environment is generally available 7x24, however since it is a test environment we cannot
guarantee 100% availability. Also, please be aware that other merchants are using the test environment so you
may see transactions and user IDs that you did not create. As a courtesy to others that are testing we ask that
when you are processing Refunds, changing passwords and/or trying other functions that you use only the
transactions/users that you created.

When using the APIs in the test environment you will need to use test store_id and api_token. These are
different than your production IDs. The IDs that you can use in the test environment are in the table below.

Test IDs

store_id api_token Username Password

store1 yesguy demouser password

store2 yesguy demouser password

store3 yesguy demouser password

store5 * yesguy demouser password

moneris ** hurgle demouser password

* “store5” is for testing eFraud (AVS & CVD)
** “moneris” is for testing VBV

When testing you may use the following test card numbers with any future expiry date.

Test Card Numbers

Card Plan Card Number

MasterCard 5454545454545454

Visa 4242424242424242

Amex 373599005095005

JCB 3566007770015365

Diners 36462462742008

eSELECTplus PHP API July 2, 2013

 Page 32 of 46

Test Card Numbers for Card Verification

Card Plan Card Number

Visa 4761739012345678

4761739012345686

4761739012345694

4761739012345603

4761739012345611

4761739012345629

4761739012345637

4761739012345645

To access the Merchant Resource Centre in the test environment go to https://esqa.moneris.com/mpg. And
use the logins provided in the previous table.

The test environment has been designed to replicate our production environment as closely as possible. One
major difference is that we are unable to send test transactions onto the production authorization network and
thus Issuer responses are simulated. Additionally, the requirement to emulate approval, decline and error
situations dictates that we use certain transaction variables to initiate various response and error situations.

The test environment will approve and decline transactions based on the penny value of the amount field.
For example, a transaction made for the amount of $399.00 or $1.00 will approve since the .00 penny value is
set to approve in the test environment. Transactions in the test environment should not exceed $1000.00. This
limit does not exist in the production environment. For a list of all current test environment responses for
various penny values, please see the Test Environment Penny Response table as well as the Test Environment
eFraud Response table, available for download at https://developer.moneris.com.

NOTE

These responses may change without notice. Moneris Solutions recommends you regularly
refer to our website to check for possible changes.

9. What Do I Need to Include in the Receipt?

Visa and MasterCard expect certain variables be returned to the cardholder and presented as a receipt when a
transaction is approved. These 12 fields are listed below. A sample receipt is provided in Appendix H. Sample
Receipt.

1. Amount
2. Transaction Type
3. Date and Time
4. Auth Code
5. Response Code
6. ISO Code
7. Response Message
8. Reference Number
9. Goods and Services Order
10. Merchant Name
11. Merchant URL
12. Cardholder Name
13. Return Policy (only a requirement for e-commerce transactions)

eSELECTplus PHP API July 2, 2013

 Page 33 of 46

10. How Do I Activate My Store?

Once you have received your activation letter/fax go to
https://www3.moneris.com/connect/en/activate/index.php as instructed in the letter/fax. You will need to input
your store ID and merchant ID then click on ‘Activate’. In this process you will need to create an administrator
account that you will use to log into the Merchant Resource Centre to access and administer your
eSELECTplus store. You will need to use the Store ID and API Token to send transactions through the API.

Once you have created your first Merchant Resource Centre user, please log on to the Interface by clicking the
“eSELECTplus” button. Once you have logged in please proceed to ADMIN and then STORE SETTINGS. At
the bottom please place a check beside the APIs that you are using. This will allow us to keep you up to date
regarding any changes to the APIs that may affect your store. Also, this is where you may locate your
production API Token.

11. How Do I Configure My Store For Production?

Once you have completed you testing you are ready to point your store to the production host. You will need to
edit the mpgClasses.php file and change the $Globals array as highlighted below in red. You will also need to
change the store_id to reflect your production store ID as well the api_token must be changed to your
production token to reflect the token that you received during activation.

PRODUCTION DEVELOPMENT

var $Globals=array(

 ‘MONERIS_PROTOCOL’ => 'https',

 ‘MONERIS_HOST’ => ‘www3.moneris.com’,

 ‘MONERIS_PORT’ =>'443',

 ‘MONERIS_FILE’ =>

‘/gateway2/servlet/MpgRequest',

 ‘API_VERSION’ =>'MPG Version 2.01',

 ‘CLIENT_TIMEOUT’ => '60'

);

var $Globals=array(

 ‘MONERIS_PROTOCOL’ => 'https',

 ‘MONERIS_HOST’ => ‘esqa.moneris.com’,

 ‘MONERIS_PORT’ =>'443',

 ‘MONERIS_FILE’ =>

‘/gateway2/servlet/MpgRequest',

 ‘API_VERSION’ =>'MPG Version 2.01',

 ‘CLIENT_TIMEOUT’ => '60'

);

Once you are in production, you will access the Merchant Resource Centre at https://www3.moneris.com/mpg.
You can use the store administrator ID you created during the activation process and then create additional
users as needed.

For further information on how to use the Merchant Resource Centre please see the eSELECTplus Merchant
Resource Centre User’s Guide which is available for download at https://developer.moneris.com.

12. How Do I Get Help?

If you require technical assistance while integrating your store, please contact the eSELECTplus Support Team:

For Technical Support:
Phone: 1-866-319-7450 (Technical Difficulties)
Email: eselectplus@moneris.com

For Integration Support:
Phone: 1-866-562-4354
Email: eproducts@moneris.com

When sending an email support request please be sure to include your name and phone number, a clear
description of the problem as well as the type of API that you are using. For security reasons, please do not
send us your API Token combined with your store ID, or your merchant number and device number in
the same email.

eSELECTplus PHP API July 2, 2013

 Page 34 of 46

13. Appendix A. Definition of Request Fields

Request Fields

Variable Name Size/Type Description

order_id

50 / an Merchant defined unique transaction identifier - must be unique for every Purchase,
PreAuth and Independent Refund attempt. For Refunds, Completions and Voids
the order_id must reference the original transaction.

The last 10 characters of the order_id will be displayed in the “Invoice Number” field
on the Merchant Direct Reports. Only the following character sets will be sent to
Merchant Direct (A_Z, a-z, space, 0-9).
A minimum of 3 and a maximum of 10 characters will be sent to Merchant Direct. If
the order_id has less than 3 characters, it may display a blank or 0000000000 in the
Invoice Number field. Only the last characters up to the invalid character will be
sent. E.G. 1234-567890, 567890 will be sent to Merchant Direct.

orig_order_id 50 / an Merchant defined transaction identifier – used in the ReAuth transaction to refer to
the original PreAuth that has been partially captured.

pan

20 / variable Credit Card Number - no spaces or dashes. Most credit card numbers today are 16
digits in length but some 13 digits are still accepted by some issuers. This field has
been intentionally expanded to 20 digits in consideration for future expansion and/or
potential support of private label card ranges.

expdate 4 / num Expiry Date - format YYMM no spaces or slashes.
PLEASE NOTE THAT THIS IS REVERSED FROM THE DATE DISPLAYED ON
THE PHYSICAL CARD WHICH IS MMYY

amount 9 / decimal Amount of the transaction. This must contain 3 digits with two penny values. The
minimum value passed can be 0.01 and the maximum 9999999.99

crypt 1 / an E-Commerce Indicator:
1 - Mail Order / Telephone Order - Single
2 - Mail Order / Telephone Order - Recurring
3 - Mail Order / Telephone Order - Instalment
4 - Mail Order / Telephone Order - Unknown Classification
5 - Authenticated E-commerce Transaction (VBV)
6 – Non Authenticated E-commerce Transaction (VBV)
7 - SSL enabled merchant
8 - Non Secure Transaction (Web or Email Based)
9 - SET non - Authenticated transaction

txn_number 255 / varchar Used when performing follow on transactions - this must be filled with the value that
was returned as the Txn_number in the response of the original transaction. When
performing a Capture this must reference the PreAuth. When performing a Refund
or a Void this must reference the Capture or the Purchase.

cust_id 50/an This is an optional field that can be sent as part of a Purchase or PreAuth request.
It is searchable from the Moneris Merchant Resource Centre. It is commonly used
for policy number, membership number, student ID or invoice number.

dynamic_descriptor 20/an Merchant defined description sent on a per-transaction basis that will
appear on the credit card statement. Dependent on the card Issuer, the
statement will typically show the dynamic desciptor appended to the
merchant's existing business name separated by the "/" character. Please
note that the combined length of the merchant's business name, forward
slash "/" character, and the dynamic descriptor may not exceed 22
characters.
-Example-
Existing Business Name: ABC Painting
Dynamic Descriptor: Booking 12345
Cardholder Statement Displays: ABC Painting/Booking 1

eSELECTplus PHP API July 2, 2013

 Page 35 of 46

cavv This is a value that is provided by the Moneris MPI or by a third party MPI. It is part
of a VBV transaction.

avs_street_number

avs_street_name

19 / an Street Number & Street Name (max – 19 digit limit for street number and street
name combined). This must match the address that the issuing bank has on file.

avs_zipcode 10 / an Zip or Postal Code – This must match what the issuing banks has on file.

cvd_value 4 / num Credit Card CVD value – this number accommodates either 3 or 4 digit CVD values.

Note: The CVD value supplied by the cardholder should simply be passed to the
eSELECTplus payment gateway. Under no circumstances should it be stored for
subsequent uses or displayed as part of the receipt information.

cvd_indicator 1 / num CVD presence indicator (1 digit – refer to section 18 for values). Typically the value
is 1.

status_check true/false Once set to “true”, the gateway will check the status of a transaction that has an
order_id that matches the one passed.
• If the transaction is found, the gateway will respond with the specifics of that

transaction.
• If the transaction is not found, the gateway will respond with a not found

message.
Once it is set to “false”, the transaction will process as a new transaction.
The Status Check flag can be passed with the following transactions: ‘Purchase’,
‘Refund’, ‘IndependentRefund’, ‘PreAuth’, ‘Completion’, ‘PurchaseCorrection’.

NOTE

The alphanumeric fields will allow the following characters: a-z A-Z 0-9 _ - : . @ spaces

All other request fields allow the following characters: a-z A-Z 0-9 _ - : . @ $ = /

eSELECTplus PHP API July 2, 2013

 Page 36 of 46

14. Appendix B. Definitions of Response Fields

Response Fields

Variable Name Size/Type Description

ReceiptId 50 / an order_id specified in request

ReferenceNum 18 / num The reference number is an 18 character string that references the terminal
used to process the transaction as well as the shift, batch and sequence
number, This data is typically used to reference transactions on the host
systems and must be displayed on any receipt presented to the customer.
This information should be stored by the merchant. The following illustrates
the breakdown of this field where "660123450010690030” is the reference
number returned in the message, "66012345" is the terminal id, "001" is the
shift number, "069" is the batch number and "003" is the transaction
number within the batch.

Moneris Host Transaction identifier.

ReponseCode 3 / num Transaction Response Code
< 50: Transaction approved
>= 50: Transaction declined
NULL: Transaction was not sent for authorization

* If you would like further details on the response codes that are returned
please see the Response Codes document available for download at
https://developer.moneris.com.

ISO 2 / num ISO response code

AuthCode 8 / an Authorization code returned from the issuing institution

TransTime ##:##:## Processing host time stamp

TransDate yyyy-mm-dd Processing host date stamp

TransType an Type of transaction that was performed

Complete True/False Transaction was sent to authorization host and a response was received

Message 100 / an Response description returned from issuing institution.

TransAmount

CardType 2 / alpha Credit Card Type

Txn_number 20 / an Gateway Transaction identifier

TimedOut True/False Transaction failed due to a process timing out

Ticket n/a reserved

RecurSucess True/false Indicates whether the transaction successfully registered.

AvsResultCode 1/alpha Indicates the address verification result. Refer to section 18

CvdResultCode 2/an Indicates the CVD validation result. Refer to section 18

CavvResultCode 1 / an The CAVV result code indicates the result of the CAVV validation.
0 = CAVV authentication results invalid
1 = CAVV failed validation; authentication
2 = CAVV passed validation; authentication
3 = CAVV passed validation; attempt
4 = CAVV failed validation; attempt
7 = CAVV failed validation; attempt (US issued cards only)
8 = CAVV passed validation; attempt (US issued cards only)
9 = CAVV failed validation; attempt (US issued cards only)

eSELECTplus PHP API July 2, 2013

 Page 37 of 46

A = CAVV passed validation; attempt (US issued cards only)
B = CAVV passed validation but downgraded; treat this transaction same
as ECI 7
Please refer to section 19 for a description for each response.

StatusCode 3/an The StatusCode is populated when status_check is set to “true” in the
request.
<50: Transaction found
>=50: Transaction not found

StatusMsg found/ not
found

The StatusMsg is populated when status_check is set to “true” in the
request.

IsVisaDebit true/false/
null

Indicates whether the card that the transaction was performed on is Visa
debit.
true = Card is Visa Debit
false = Card is not Visa Debit
null = there was an error in identifying the card

eSELECTplus PHP API July 2, 2013

 Page 38 of 46

15. Appendix C. CustInfo Fields

Field Definitions

Field Name Size/Type Description

Billing and Shipping Information

NOTE: The fields for billing and shipping information are identical. Please refer to section 6 - Purchase (with
Customer and Order details) for an example.

first_name 30 / an

last_name 30 / an

company_name 50 / an

address 70 / an

city 30 / an

province 30 / an

postal_code 30 / an

country 30 / an

phone 30 / an

fax 30 / an

tax1 10 / an

tax2 10 / an

tax3 10 / an

shipping_cost 10 / an

Item Information

NOTE: You may send multiple items. Please refer to section 6 - Purchase (with Customer and Order details)
for an example.

item_name 45 / an

item_quantity 5 / num You must send a quantity > 0 or the item will not be added to the
item list (i.e. minimum 1, maximum 99999)

item_product_code 20 / an

item_extended_amount 9 /decimal This must contain 3 digits with two penny values. The minimum
value passed can be 0.01 and the maximum 9999999.99

Extra Details

email 60 / an

instructions 100 / an

NOTE

If you send characters that are not included in the allowed list, these extra transaction details may not
be stored.

All fields are alphanumeric and allow the following characters: a-z A-Z 0-9 _ - : . @ $ = /
All French accents should be encoded as HTML entities, e.g. é

Also, the data sent in Billing and Shipping Address fields will not be used for any address verification.
Please refer to section 6 - Purchase (with Customer and Order details) for an example.

eSELECTplus PHP API July 2, 2013

 Page 39 of 46

16. Appendix D. Recur Fields

Recur Request Fields

Variable Name Size/Type Description

recur_unit day, week, month The unit that you wish to use as a basis for the Interval. This can be
set as day, week or month. Then using the “period” field you can
configure how many days, weeks, months between billing cycles.

period 0 – 999 / num This is the number of recur_units you wish to pass between billing
cycles.
Example :
period = 3, recur_unit=month -> Card will be billed every 3 months.
period = 4, recur_unit=weeks -> Card will be billed every 4 weeks.
period = 45, recur_unit=day -> Card will be billed every 45 days.
Please note that the total duration of the recurring billing transaction
should not exceed 5-10 years in the future.

start_date YYYY/MM/DD This is the date on which the first charge will be billed. The value must
be in the future. It cannot be the day on which the transaction is being
sent. If the transaction is to be billed immediately the start_now feature
must be set to true and the start_date should be set at the desired
interval after today.

start_now true / false When a charge is to be made against the card immediately start_now
should be set to ‘true’. If the billing is to start in the future then this
value is to be set to ‘false’. When start_now is set to ‘true’ the amount
to be billed immediately may differ from the recur amount billed on a
regular basis thereafter.

recur_amount 9 / decimal Amount of the recurring transaction. This must contain 3 digits with two
penny values. The minimum value passed can be 0.01 and the
maximum 9999999.99. This is the amount that will be billed on the
start_date and every interval thereafter.

num_recurs 1 – 99 / num The number of times to recur the transaction.

amount 9 / decimal When start_now is set to ‘true’ the amount field in the transaction array
becomes the amount to be billed immediately. When start_now is set
to ‘false’ the amount field in the transaction array should be the same
as the recur_amount field.

Recur Request Examples

Recur Request Exampl Description

$recurArray = array(‘recur_unit’=>’month’,

 ‘start_date’=>’2007/01/02’,

 ‘num_recurs’=>’12’,

 ‘start_now’=>’false’,

 ‘period’ => ‘2’,

 ‘recur_amount’=> ’30.00’

);

$mpgRecur = new mpgRecur($recurArray);

// ------ step 3) create transaction array ###

$txnArray=array(‘type’=>'purchase',

 ‘order_id’=>’monthly_bill’,

 ‘cust_id’=>’mem-1234-01’,

 ‘amount’=>’30.00’,

 ‘pan’=>’5454545454545454’,

 ‘expdate’=>’0712’,

 ‘crypt_type’=>'2'

);

In the example to the left the first transaction will occur in
the future on Jan 2

nd
 2007. It will be billed $30.00 every 2

months on the 2
nd

 of each month. The card will be billed a
total of 12 times.

eSELECTplus PHP API July 2, 2013

 Page 40 of 46

$recurArray = array(‘recur_unit’=>’week’,

 ‘start_date’=>’2007/01/02’,

 ‘num_recurs’=>’26’,

 ‘start_now’=>’true’,

 ‘period’ => ‘2’,

 ‘recur_amoun’t=> ’30.00’

);

$mpgRecur = new mpgRecur($recurArray);

// ------ step 3) create transaction array ###

$txnArray=array(‘type’=>'purchase',

 ‘order_id’=>’biweekly_bill’,

 ‘cust_id’=>’mem-1234-02’,

 ‘amount’=>’15.00’,

 ‘pan’=>’5454545454545454’,

 ‘expdate’=>’0712’,

 ‘crypt_type’=>'2'

);

In the example on the left the first charge will be billed
immediately. The initial charge will be for $15.00. Then
starting on Jan 2

nd
 2007 the credit card will be billed $30.00

every 2 weeks for 26 recurring charges. The card will be
billed a total of 27 times. (1 x $15.00 (immediate) and 26 x
$30.00 (recurring))

NOTE

When completing the recurring billing portion please keep in mind that to prevent the shifting of recur
bill dates, avoid setting the start_date for anything past the 28

th
 of any given month when using the

recur_unit set to “month”. For example, all billing dates set for the 31
st
 of May will shift and bill on the

30
th

in June and will then bill the cardholder on the 30
th
 for every subsequent month. To set the billing

dates for the end of the month please set the recur_unit to “eom”.

Recur Update Request Fields

Variable Name Size/Type Description

cust_id 50 / an This updates the current cust_id associated with the recurring
transaction and will be submitted with all future recurring purchases.

pan 20 / variable Credit Card Number - no spaces or dashes. Most credit card numbers
today are 16 digits in length but some 13 digits are still accepted by
some issuers. This field has been intentionally expanded to 20 digits
in consideration for future expansion and/or potential support of
private label card ranges.
This will be the new credit card number charged with all future recurs.
This field pertains only to credit card transactions.

expiry_date YYMM / num Expiry Date - format YYMM no spaces or slashes, replaces the
current expiry date in the payment details and must be today’s date or
later.
PLEASE NOTE THAT THIS IS REVERSED FROM THE DATE DISPLAYED
ON THE PHYSICAL CARD WHICH IS MMYY

avs_street_number

avs_street_name 19 / an

Street Number & Street Name (max – 19 digit limit for street number and
street name combined). This must match the address that the issuing bank
has on file. The updated AVS details will be submitted for all future credit
card recurs. Please note; the store must have the AVS feature enabled.

avs_zipcode 9 / an Zip or Postal Code – This must match what the issuing banks has on file.

recur_amount 9 / decimal Amount of all future recurring transaction. This must contain 3 digits
with two penny values. The minimum value passed can be 0.01 and
the maximum 9999999.99.

add_num 1-999 / num This is the number of recurring transactions to be added to the
current total number of recurs on file.
Example:
num_recurs* = 5, add_num = 2, New total number of recurs = 7
*the “num_recurs” initially sent in while registering the recurring
transaction. Please refer to Recur Request Fields table for variable

eSELECTplus PHP API July 2, 2013

 Page 41 of 46

definition.

total_num 1-999 / num This is an update to replace the current total number of recurs on file.
Example:
num_recurs* = 5, total_num = 2, New total number of recurs = 2
*the “num_recurs” initially sent in while registering the recurring
transaction. Please refer to Recur Request Fields table for variable
definition.

hold true / false A transaction can be put 'On Hold' at any time. While a transaction is
'On Hold' it will not be billed when the time comes for it to recur, but
the number of recurs will be decremented.

terminate true / false A Recurring Billing transaction can be Terminated at any time. A
terminated Recurring transaction can no longer be reactivated.

Recur Update Response codes:

The Recur Update response is a 3 digit numeric value. The following is a list of all possible responses once a
Recur Update transaction has been sent thru.

Recur Update RESPONSE CODES

RESULT VALUE DEFINITION

001 Recurring transaction successfully updated (optional: terminated)
983 Can not find the previous transaction
984 Data error: (optional: field name)
985 Invalid number of recurs
986 Incomplete: timed out
null Error: Malformed XML

NOTE

When completing the update recurring billing portion please keep in mind that the recur bill dates cannot
be changed to have an end date greater than 10 years from today and cannot be changed to have an
end date end today or earlier.

eSELECTplus PHP API July 2, 2013

 Page 42 of 46

17. Appendix E. Error Messages

Global Error Receipt – You are not connecting to our servers. This can be caused by a firewall or your
internet connection.

Response Code = NULL – The response code can be returned as null for a variety of reasons. A majority of
the time the explanation is contained within the Message field. When a ‘NULL’ response is returned it can
indicate that the Issuer, the credit card host, or the gateway is unavailable, either because they are offline or
you are unable to connect to the internet. A ‘NULL’ can also be returned when a transaction message is
improperly formatted.

Below are error messages that are returned in the Message field of the response.

Message: XML Parse Error in Request: <System specific detail>
Cause: For some reason an improper XML document was sent from the API to the servlet

Message: XML Parse Error in Response: <System specific detail>
Cause: For some reason an improper XML document was sent back from the servlet

Message: Transaction Not Completed Timed Out
Cause: Transaction times out before the host responds to the gateway

Message: Request was not allowed at this time
Cause: The host is disconnected

Message: Could not establish connection with the gateway: <System specific detail>
Cause: Gateway is not accepting transactions or server does not have proper access to internet

Message: Input/Output Error: <System specific detail>
Cause: Servlet is not running

Message: The transaction was not sent to the host because of a duplicate order id
Cause: Tried to use an order id which was already in use

Message: The transaction was not sent to the host because of a duplicate order id
Cause: Expiry Date was sent in the wrong format

eSELECTplus PHP API July 2, 2013

 Page 43 of 46

18. Appendix F. Card Validation Digits (CVD) & Address Verification Service
(AVS)

Card Validation Digits (CVD)

The Card Validation Digits (CVD) value refers to the numbers appearing on the back of the credit card which
are not imprinted on the front. The exception to this is with American Express cards where this value is indeed
printed on the front

Address Verification Service (AVS)

The Address Verification Service (AVS) value refers to the cardholder’s street number, street name and
zip/postal code as it would appear on their statement.

Additional Information for CVD and AVS

The responses that are received from CVD and AVS verifications are intended to provide added security and
fraud prevention, but the response itself will not affect the issuer’s approval of a transaction. Upon receiving a
response, the choice to proceed with a transaction is left entirely to the merchant.

Please note that all responses coming back from these verification methods are not direct indicators of whether
a merchant should complete any particular transaction. The responses should not be used as a strict guideline
of which transaction will approve or decline.

NOTE

Please note that CVD verification is only applicable towards Visa, MasterCard and American Express
transactions.

Also, please note that AVS verification is only applicable towards Visa, MasterCard, Discover and
American Express transactions. This verification method is not applicable towards any other card
type.

*For additional information on how to handle these responses, please refer to the eFraud (CVD & AVS)
Result Codes document which is available at https://developer.moneris.com.

eSELECTplus PHP API July 2, 2013

 Page 44 of 46

19. Appendix G. CAVV Result Code

The Cardholder Authentication Verification Value (CAVV) is a value that allows VisaNet to validate the integrity
of the VbV transaction data. These values are passed back from the issuer to the merchant after the
VbV/SecureCode authentication has taken place. The merchant then integrates the CAVV value into the
authorization request using the ‘cavv_purchase’ or 'cavv_preauth' transaction type.
For more information on sending VBV/SecureCode transactions, please refer to our "Moneris MPI - Verified By
Visa / MasterCard SecureCode ColdFusion API" document.

The following table describes the contents of the CAVV data response and what it means to the merchant.

Table of CAVV result codes

Result
Code

Message What this means to you as a merchant…

0

CAVV authentication results
invalid.

For this transaction you may not receive protection from
chargebacks as a result of using VBV as the CAVV was
considered invalid at the time the financial transaction was
processed.
Please check that you are following the VBV process
correctly and passing the correct data in our transactions.

1

CAVV failed validation;
authentication

Provided that you have implemented the VBV process
correctly the liability for this transaction should remain with
the Issuer for chargeback reason codes covered by Verified
by Visa.

2
CAVV passed validation;
authentication

The CAVV was confirmed as part of the financial transaction.
This transaction is a fully authenticated VBV transaction
(ECI 5)

3
CAVV passed validation; attempt The CAVV was confirmed as part of the financial transaction.

This transaction is an attempted VBV transaction (ECI 6)

4

CAVV failed validation; attempt Provided that you have implemented the VBV process
correctly the liability for this transaction should remain with
the Issuer for chargeback reason codes covered by Verified
by Visa.

7

CAVV failed validation; attempt (US
issued cards only)

Please check that you are following the VBV process
correctly and passing the correct data in our transactions.
Provided that you have implemented the VBV process
correctly the liability for this transaction should be the same
as an attempted transaction (ECI 6)

8
CAVV passed validation; attempt
(US issued cards only

The CAVV was confirmed as part of the financial transaction.
This transaction is an attempted VBV transaction (ECI 6)

9

CAVV failed validation; attempt (US
issued cards only)

Please check that you are following the VBV process
correctly and passing the correct data in our transactions.
Provided that you have implemented the VBV process
correctly the liability for this transaction should be the same
as an attempted transaction (ECI 6)

A
CAVV passed validation; attempt
(US issued cards only)

The CAVV was confirmed as part of the financial transaction.
This transaction is an attempted VBV transaction (ECI 6)

B
CAVV passed validation The CAVV was confirmed as part of the financial transaction.

However, this transaction does qualify for the liability shift.
Treat this transaction the same as an ECI 7.

eSELECTplus PHP API July 2, 2013

 Page 45 of 46

20. Appendix H. Sample Receipt

Your order has been Approved

Print this receipt for your records

QA Merchant #1

3250 Bloor St West

Toronto Ontario

M8X2X9

1 800 987 1234

www.moneris.com

Transaction Type: Purchase

Order ID: mhp3495435587

Date/Time: 2002-10-18 11:27:48

Sequence Number: 660021630012090020

Amount: 12.00

Approval Code: 030012

Response / ISO Code: 028/04

APPROVED * =

Item Description Qty Amount Subtotal

cir-001 Med Circle 1 2.00 2.00

tri-002 Big triangle 1 1.00 1.00

squ-003 small square 2 1.00 3.00

 Shipping: 4.00

 GST : 1.00

 PST : 1.00

 Total: 12.00 CAD

Bill To:

Test Customer

123 Main St

Springfield

ON

Canada

M1M 1M1

tel: 416 555 1111

fax: 416 555 1111

Ship To:

Test

1 King St

Bakersville

ON

Canda

M1M 1M1

tel: 416 555 2222

fax: 416 555 2222

Special Instructions

Knock on Back door when delivering

E-Mail Address:eselectsupport@moneris.com

Refund Policy

30 Days - Must be unopened, 10% restocking charge.

eSELECTplus PHP API July 2, 2013

 Page 46 of 46

eSELECTplus™

Copyright Notice
Copyright © 2013 Moneris Solutions, 3300 Bloor Street West, Toronto, Ontario, M8X 2X2

All Rights Reserved. This manual shall not wholly or in part, in any form or by any means, electronic, mechanical, including photocopying,
be reproduced or transmitted without the authorized, written consent of Moneris Solutions.

This document has been produced as a reference guide to assist Moneris client’s hereafter referred to as merchants. Every effort has been
made to the make the information in this reference guide as accurate as possible. The authors of Moneris Solutions shall have neither
liability nor responsibility to any person or entity with respect to any loss or damage in connection with or arising from the information
contained in this reference guide.

Trademarks
Moneris and the Moneris Solutions logo are registered trademarks of Moneris Solutions Corporation.

Any software, hardware and or technology products named in this document are claimed as trademarks or registered trademarks of their
respective companies.

Printed in Canada.

10 9 8 7 6 5 4 3 2 1

