eSelect

Merchant Integration Guide
PHP APlI-v 1.24

Moneris@

SOLUTIONS

eSELECTplus PHP API November 6, 2012

Revision Date Description

Number

V1.1.0 January 22, 2007 -Document edited for coherence

Vi1 February 4, 2008 -Section 2. System and Skill Requirement -Added PCI note

-Section 8. Transaction with Extra features: Purchase with CVD and AVS (eFraud)
-Added CVD note.

-Appendix A. Definition of Request Fields — Added CVD note.

-Appendix F. Card Validation Digits (CVD) — Added CVD note.

V1i.1.2 July 15, 2008 -Section 6. Transaction Types and Transaction Flow

- added ACH & Pinless Debit transactions to the process flow
-Section 7. Basic Transaction Examples — Added Force Post transaction type
-Section 9. Mag Swipe Transaction Examples - Added Mag Swipe Force Post
transaction type
-Section 11. Pinless Debit Transaction Examples — Added Pinless Debit Transaction
Examples
-Section 12. ACH Transaction Examples — Added ACH Transaction Examples
-Section 13. ACH Transaction Examples with Extra Features

-Added ACH Debit (with Customer and Order details)

- ACH Debit (with Recurring Billing)
-Section 14. Administrative Transactions — Added Recur Billing Update (Customer
Information)
-Section 16. How Do | Test My Solution?

-Added new list of test stores

-Added test card and bank account details
-Appendix A. Definition of Request Fields — Updated pos_code definition
-Appendix D. Recur Fields

-Added Recur Update Request Fields.
-Added Recur Update Response codes.

-Appendix E. Achinfo Fields - Added new section
-Appendix H. Address Verification Service (AVS) — Merged Visa/MC/Discover
Response Code tables
-Appendix J. Basic Transaction Receipt (Non Track?2)

-Added new section with screenshots

-Replaced receipt example
-Appendix K. Mag Swipe Transaction Receipt (Track2) — Added new section with
screenshots
-Appendix L. ACH Transaction Confirmation — Added new section with screenshots
-Appendix M. Pinless Debit Fields — Added new section

V1.1.3 September 28, 2010 | -Section 2. System and Skill Requirement — Added PCI & PA-DSS requirements
note.
-Section 6. Transaction Types and Transaction Flows — added ACH & Pinless Debit
transaction definitions
-Section 13. ACH Transaction Examples

- Added ACH Debit (Check not present) example notes

- Added ACH Debit (Check present) example
-Section 18. What Do | Need to Inlcude in the Receipt?

-Added ACH (Check Present)
-Appendix B. Definitions of Response Fields — Added Recur Update response fields
-Appendix D. Recur and Recur Update Fields — Updated Recur Update ‘terminate’
request variable definition
-Appendix F. Achlinfo Fields — Added ACH Debit Check Present request fields
-Appendix G. ACH Sec Codes and Process Flow — Added Sec Code definitions and
decision flow charts
-Appendix N. Pinless Debit Transaction Receipt — Added new section with
screenshots
-Appendix O. ACH Transaction Receipt (Check Not Present) — Updated existing ACH
receipt to identify it for Check Not Present only
-Appendix P. ACH Transaction Receipt (Check Physically Present)

-Added new section with screenshots

V1.2.0 June 2, 2011 -Section 2. System and Skill Requirement — Updated PCI & PA-DSS requirements
note.
-Section 6. Transaction Types and Transaction Flow

Page 2 of 117

eSELECTplus PHP API

November 6, 2012

-Added Process Flow for PreAuth/ReAuth/Capture Transactions
-Added Card Verification & ReAuth transaction definitions
-Section 7. Basic Transaction Examples
-PreAuth (basic) - Added PreAuth reversal note
-Added ReAuth example
-Capture - Added PreAuth reversal note
-Added Dynamic Descriptor to the following examples:
-Purchase (basic)
-PreAuth (basic)
-ReAuth
-Independent Refund
-Force Post
-Added CardLevelResult to the following examples:
-Purchase (basic)
-PreAuth (basic)
-ReAuth
-Independent Refund
-Force Post
-Section 8. Basic Transaction with Exttra Features
-Added Dynamic Descriptor to the following examples:
-Purchase (with Customer and Order Details)
-Purchase (with Verified by Visa / MasterCard SecureCode)
-Purchase (with Recurring Billing)
-Purchase (with CVD and AVS-eFraud)
-Added CardLevelResult to the following examples:
-Purchase (with Customer and Order Details)
-Purchase (with Recurring Billing)
-Purchase (with CVD and AVS-eFraud)
-Section 9. Mag Swipe Transaction Examples
-Added Dynamic Descriptor to the following examples:
-Mag Swipe Purchase
-Mag Swipe PreAuth
-Mag Swipe Independent Refund
-Mag Swipe Force Post
-Added CardLevelResult to the following examples:
-Mag Swipe Purchase
-Mag Swipe PreAuth
-Mag Swipe Independent Refund
-Mag Swipe Force Post
-Section 10. Mag Swipe Transactions with Exttra Features
-Mag Swipe Purchase (with AVS) Example
-Added Dynamic Descriptor
-Added CardLevelResult
-Section 15. Administrative Transactions — Added Card Verification example
-Section 21. How Do | Get Help? — Updated contact phone numbers and email
addresses
-Appendix A. Definition of Request Fields
-Added orig_order_id
-Added dynamic_descriptor
-Appendix B. Definitions of Response Fields — Added CardLevelResult
-Appendix D. Recur and Recur Update Fields — Added new ‘eom’ (end of month)
recur_unit
-Appendix L. Card Level Result Value — Added new section with definition table

Vi.2.1

July 18, 2011

-Section 17. How Do | Test My Solution? — Added cURL CA Root Certificate
File note

V1.2.2

December 13, 2011

-Appendix |. Card Validation Digits (CVD) — Added American Express response
codes

-Appendix J. Address Verification Services(AVS) — Added American Express/JCB
response codes

-Appendix K. Additional Information for CVD and AVS — Added American Express

Vi.23

August 21, 2012

-New download link updated in various locations: https://developer.moneris.com/
-Section 6. Transaction Types and Transaction Flow — Added Encrypted Mag Swipe
Credit Card Transactions

-Section 7. Basic Transactions — Added note to Independent Refund

Page 3 of 117

eSELECTplus PHP API November 6, 2012

-Section 8. Transaction with Extra features
-Added CavvResultCode to Purchase(with VbV/MasterCard SecureCode)
-Added Purchase (with Status Check)
-Section 9. Mag Swipe Transactions — Added note to Mag Swipe Independent
Refund
-Section 11. Encrypted Mag Swipe Transactions — Added new section with examples
-Section 12. Encrypted Mag Swipe Transactions with Extra Features — Added new
section with examples
-Appendix A. Definition of Request Fields
-Added status_check request field
-Added enc_track2
-Added device_type
-Appendix B. Definitions of Response Fields
-Added MaskedPan response field
-Added CavvResultCode response field
-Added StatusCode response field
-Added StatusMessage response field
-Appendix L. Card Level Result value — Updated table with new values
-Appendix M. CAVV Result Code — Added new table with definitions

Vi.2.4 November 6, 2012 -Section 6. Transaction Types and Transaction Flow — Added Encrypted Credit Card
Transactions

-Section 9. Encrypted Transactions — Added new section with examples

-Section 10. Encrypted Transactions with Extra Features — Added new section with
examples

-Section 13. Encrypted Mag Swipe Transactions — Added Encrypted Mag Swipe
Forcepost transaction type

-Section 19. Administrative Transactions — Added Encrypted Card Verification
transaction type

Page 4 of 117

eSELECTplus PHP API November 6, 2012

Table of Contents

S R A

®

©

X

ADOUL ThiS DOCUMENIATIONeeeresseerireseeinmssesiemsnsssemenmssessrmsnsssemsnsssesssssssseessssssessensssnsensen 9

System and SkKill ReqQUIrements...........cccusssummeeeessissssssssssmmensssssssssssssssmsmnsssssssssssssssnmseenessns 9

VEOIITIOU DY VISceeeeeeeeeeeeeeieemiinemsinemssssemssssemssssenssssemsssesssssnsssssnsssssnssssesssensnssesenssssensses 9

MasterCard SECUIECOAEveeeueeeureemsiemsiresseesssesssresseesssssssnesssssssnsssresssrsssnssssesssesssrsnns 9

What is the Process | Will NEEA 1O FOIOW Peeeeeeereeieeeeeeiresineinemsanmsanessnemssrmssrenseens 10

Transaction Types and TransSaction FIOWcccuuusssssmmeessssissssssssssmmennsssssssssssssnnnees

Process Flow for Basic Credit Card TranSactions...........ccciiuiiiiiiiiiiiiicieiee ettt st
Process Flow for PreAuth / ReAuth / Capture TranSaCtionscecuereeriereeitertientineetenieetesieete st et sreete st et sseere st eeesreenesbeensessees
Process Flow for Encrypted Credit Card TTanSACIONScoeeovirieiiririienieienteetesteete sttt sttt st et sbe ettt et sbe et e sbe et e sbeeanesbeensesnees
Process Flow for Mag Swipe Credit Card Transactions..........cc.ccccceveue
Process Flow for Encrypted Mag Swipe Credit Card Transactions

Process Flow for Pinless Debit Transactionscecceeceeveereenueneenans

Process FIOW fOr ACH TranSaCIONSceuevuietertiitiitieteett ettt et et te e e tt et e s bt et e et e e besb e et e ebeesbesstenbeestenteestenbesstensesatanbesstentesaeensennes

Basic Transaction EXAMPIEScccuusssssmeeessssissssssssssmnenssssssssssssssmmsensssssssssssssssmssnsssnns

PUICRASE (DASIC) ..vviiiiiiiiiieiie ettt ettt e e et e e et e e e e ataeeeetbeeeeaaseeeasesee e aseeeaassaeaassseeesseeesassaeessseeessseeeansseeassseessseeeansseeesnseeannes
Pre Auth (DasiC) ..ccocvviiieiieieeie e
REAULN. .. oo
CaAPLUTE. . ..t
VOId. .ot et
Refund.......oooiiiiiiiiceeee e
Independent Refund...........ccoeoiiiininiiiniininiiecicceeee
FOTCE POSE ..ttt ettt ettt e e a bt e e bttt e a bt e e e a bt e e e a bt e e e e sttt e e ab e e e e abt et e aab bt e e st e e e s bt e e e eab b e e e abt e e e bteeeanbaeeeas

Basic Transactions with Extra Features - EXQAMPIESc...eeeeemeeueemseeueemsrmseeneensseneenses 25

Purchase (with Customer and OTAEr dEAILS)........cccvieiuiieiiiiiieeiieete et e et e et e eteeeteeeaeesteeebeesteessseesseeesseessseanseassseesseessseeseessseesssensseanns
Purchase (with Verified by Visa / MasterCard SecureCode)
Purchase (with Recurring Billing)cccccocevvvineriininnicninncnenne
Purchase (with CVD and AVS - eFraud).........cccceeevveieennnnn.
Purchase (With Statis CRECK).......cuuiiiiiiie ettt et e e et e e ettt e e etaeeeesteeeeeabeeesasseeaaasaeeesseeeaasseeeassseesssesessseesassseeannns

Encrypted TranSacCtioN EXANMPDICSeeueemeeuermssmiemirmssemsemsssssemsssssesssmsssssensssssessrnsssneenses

ENCTYPLEA PUICRASE. ...couiiiiiiiiieee ettt h et sat e e bt e e et e e bt e sab e e bt e e st e e sbbeeabeenbaeenbeesabeeabeesabeebeenabeenne
Encrypted PreAuth........cccocieiiniiiiniiincccceceeee

Encrypted Independent Refund
ENCIYPLEA FOTCE POSE ...ttt sttt et h et s bttt s bt et e e bt e bt s bt et e s bt et e s be et e e bt e b e sbeentesmeenneeae

Encrypted Transactions with Extra Features - EXAmMPIESueueemseeuermirmseeuiemsneneenses 39

Encrypted Purchase (with Customer and Order details)c.cceieiririinierieiiieerestc ettt et 39
Encrypted Purchase (with Recurring BilliNE)cc.coeeiiriiiiiniiiinieieeeteet ettt ettt st sttt s be e 41
Encrypted Purchase (with CVD and AVS - €FTaud)......c..coouiiiiiiiniiiieeeeeeetee ettt sttt s e 43

Mag Swipe Transaction EXamplescossseemeeeessmsssssssssmmenssssssssssssssmsmmsssssssssssssssnzees 45

MAZ SWIPE PUICHASEcviiiiiiiieiceeecee ettt ettt et et a bt ae e bbb et et aeeateb e s b e st e s et et eneebenaenaenee
MaAZ SWIPE PTEAULN.....c.couiiiiiiiii ettt ettt sttt e b bbb h et esteae bt et e b e s s st et eat bt s b et e s et eateneebesaenaenee
IMAZ SWIPE CAPLULE.eenveeuriieeititeetenteeteetteat et e e et e bt et e stees e e sbe et e s bt e teeb e e st e sbe e st e sbeeasesh e e st e eb e et e ebeem b e ebeemseebeemaesbe et e sbeenteebeenbesbeentesmeennenae
Mag Swipe Void..........

Mag Swipe Refund
Mag Swipe Independent Refund
MAZ SWIPE FOTCEPOSE ...ttt ettt ettt ettt ettt e bbbt e s e et eaeea e et b e s st et a e eaeebe s b e st e s et eaeeneebenaenaenne

Mag Swipe Transactions with Extra Features - EXamplesccozeezuussssensnnsnnnnnnnees 52

Mag Swipe Purchase (with Address Verification SErvice — AVS) ..c..ooiiiiiiiiieieerteee ettt 52
Encrypted Maqg Swipe Transaction EXamples............coccceueeerisssssssssnmmeessssssssssssssnzmeesssnns 54

Encrypted Mag SWIpe PUICRASE.c.cccciiiiiriiiiiiiiesert ettt ettt et et sttt et eb e s bt et ene b be e e 54

Page 5 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Mag SWIPe PIEAULN........ccoociiiiiiiiiiieeieeeeet ettt sttt ettt et be sttt eat b bt ettt ene et aenaenee 55
Encrypted Mag Swipe Independent REfUNQ.........c..ccooiiiiiiiiiiiiiieeceere sttt ettt 56
Encrypted Mag SWIPe FOICEPOSEccciuiriiriiriiieieiiitetestert ettt ettt ettt ettt et b e ettt e st et s b et st et ene e b e aenaenne 57
14. Encrypted Mag Swipe Transactions with Extra Features — Examples......................... 58
Encrypted Mag Swipe Purchase (with Address Verification Service — AVS)cccoviriiiiiiiiiiinininencceeeesese e 58
15. Pinless Debit Transaction EXamplescccccoueeeeeeeeeeeeessessessssssssssessssssssssmmsmmsmmsemenene: 60
PINIESS DEDIt PUICRASEc.eiiiiiieiiiieiieseeee ettt e et e et e st e et esste e seeease e seeenteesseeeaseeasseenseeanseenseeensaensseenseennseenseennseanns 60
Pinless DEDit REFUNG.c.coiiiiiiieiece ettt ettt e st e et e s st e e tee e et e e seeeateesseeeaseessseensaeenseenseeenseensseenseesnseenseennsennns 61
16. Pinless Debit Transaction with Extra Features - Examplesccccceeeeusssssssssseenences 62
Pinless Debit Purchase (with Customer and Order detailS)..........ccuievveeiiieiiieiiieiiieeieesee et esteeereesteeesbeesaeebeessseeseessseenseessseessaasseanns 62
Pinless Debit Purchase (with Recurring BIllINg)..........cocoiriiiiiiiiiiiiiniccecteese sttt sttt sttt 64
17. ACH Transaction EXamplescooessceeemeermissssssssnmsenssssssssssssssnmsssssssssssssssssnmssnsssssssssssss 65
ACH DLeiuviiiiietiieieeette ettt ettt et e et e e bt e etbe e bt e esbe e teeeabeasseessaesssaaaseassaessaeasseaasseesseesseasseaasseensaensseenseesseersaeasseenseeesseesaennseanns 65
ACH Debit (ChECK NOT PIESEIL)...cuueiuiiriiiriieiieiietieite ettt sttt et et eite st esbtesbe e bt eateeabeetaesbaesbeenbeebesabesatesbtesaeenbeenseenteans 65
ACH Debit (CRECK PIESEINL)eeiiiuiiiiiiiiieiiientteit ettt ettt ettt ettt st bt e bt e bt e bt ea b e ebtesbeesbeenbeenbeeaaesatesbeesbeenbeenteenteaas 67
ACH CTOAIL...euveeitieiieeie ettt ettt et ettt e vt e et e e teeetbe e beeesbeeesaeesse e sseessaesssaasseassaessaessseeasseesseessaaeseaasseessaessseanseensseassaessseenseessseessaensseanns 68
ACH REVEISAL ...ttt e ettt e e e e ettt e e e e e eeataaaeeeeeeeessasaeeeaeeesasasaaeeeeaatsssaaaeeaesassssssaeeeeaanssssseeeeeeasssssseeseeannsssseeeeeannes 69
ACH FIENQUITY ..ottt ettt ettt sttt ettt ettt eb bt e b e sa s e e s e st eae e bt et e b e st et estestent et e s b e st et et eateneebenaenaenne 70
18. ACH Transactions with Extra Features — EXamplesccccceeeeeeeeeeeeeeseseeeeesseseeenens 71
ACH Debit (with Customer and Order details)............cecvuiiiiiiiiiiiiiiecctee ettt et e et e e e et e e e tbeeestee e e abeeestaeeesssseeessseeessseesassseennes 71
ACH Debit (With Recurring BIllING)........cccoeriioieiiiiininertcteeet ettt ettt sttt et eb e s bt et ene b s b saenee 73
19. Administrative TranSacliOns...............cccuueeeeeeeeesseesmmsemmsesmssssssmmssssssssssssessssssesssszsnssszsezeseees 75
57 1 od s T o1 RS SRRRPSRPRN 75
OPCI TOLALS ...ttt et bt et e b et s bt e a e s bt e st e bt e st e s bt e st e e bt e st e sb e e st e bt e st e e bt e a et e bt e ab e e bt et eb e et e bt et e e be et e sheeneenbeen 76
(O e BV 31 17 15 103 1 U SRRRPSRPRN 77
Encrypted Card VETITICAtIONc..cuiiiiiiriiieicieteieeeetese ettt ettt ettt et be ettt e st et st ettt easeneebesaenaenee 78
RECUE UPAALE ..ottt h bbb b e b e a e b e b e b s h e e s hs e b e e bt e b e sas e b e saee b eais 80
Recur Update — Credit Card €XAMPIEcco.eeruiiiiiiiniiiiieieeteet ettt sttt ettt ettt st sb e bt et etesate it e sbeenaeenteeas 80
Recur Update — Pinless Debit €XAMPLEc..eoruiiiiiiiriiiieiieieeitestt ettt ettt st b e e e ettt st e sbeenaeenteeas 81
Recur Update — ACH EXAMPLE......coutiiiiiiiiiiiiieiie ettt sttt ettt ea e sb e e bt e bt e bt et e satesaeesbeenbeenteeas 82
20. What Information will | get as a Response to My Transaction Request?..................... 83
21. How Do | Test My SOIULION?.............cceeeeeeeeeeeeseesseesessssssesessssssssssssssssssssssssssssssssssnessnnszenenes 83
22. What Do | Need to Include in the ReCeipPt?..........cooceeeeersissssssssnmmeensssssssssssssszseensssssssssssss 85
23. How Do I Activate My StOr€?cceeeeeeeeeeseseessessessssssessssssssssssssssssssssssssssssssssssnsssssssennnes 85
24. How Do I Configure My Store For ProducCtion?.............cccceeesssssememessssissssssssnsmeesssssssssssss 85
25. How Do | Get HEIP?...........cceveeeeeeeeeeenanenesseessesssssssessessenssesssssssssssssssssssnssssssnsssssssssnsssnnsnnnnnes 86
26. Appendix A. Definition of Request FieldsS............cuuuuuemeeeeeeeemessssmsssssssssssssssessssssnsssssssssenes 87
27. Appendix B. Definitions of ReSponse Fields.........ccccuuuuuuaasssssssmmmeenssssssssssssssmmeensssssssssssas 89
28. Appendix C. CUSHINTO Fi@ldsScsssssmmeeeesrsissssssssnnmsenssssssssssssssnmennsssssssssssssszmsensssssssssssss 91
29. Appendix D. Recur and Recur Update Fi@ldsS.........cccueerearsssssssmmmeenssssssssssssssmmennsssssssssssas 92
30. Appendix E. Pinless Debit FieldsScuuuuueemeemeseemmsesessssssssssssssssssssssssssssssssssnssssseesseees 95
31. Appendix F. Achinfo Fields................ccccueeeeeeeseeeseesesssnssessesesssssssssssssssssssssssssssssssnssszssneneees 96
32. Appendix G. ACH Sec Codes and Process FIOWcccossssemeeessssissssssssnnmeesssssssssssss 97
33. Appendix H. Error MeSSAQeSccuusssssummeeesssssssssssssnmmnnnsssssssssssssnmmsnnssssssssssssssnmssnssssnssssssss 99

Page 6 of 117

eSELECTplus PHP API November 6, 2012

34.
35,
36.
37.
38.
39,
40.
41.

42.
43.

Appendix I. Card Validation DiQitS (CVD)ccuussssummmesesssssssssssssmmmesssssssssssssssmmmmeesnnns 100
Appendix J. Address Verification Service (AVS)ccceeessssueesisssssmesssssssseessssssssnensnnns 101
Appendix K. Additional Information for CVYD and AVS..............ccceeeeeeeeeeeeeeeeeeeeeseeennenes 102
Appendix L. Card Level Result Value..............ocoseeeeeesiiisssssssnmeessssssssssssssssnzennsssssssssssas 103
Appendix M. CAVV ReSult COAe.......ccurssummmermrrrmsssssssssmmnnnnsssssssssssssmmmessssssssssssssssmmsesesnns 105
Appendix N. Basic Transaction Receipt (NON TraCK2)ccoceesssssssssssssssssssssssssssssnas 106
Appendix O. Mag Swipe Transaction Receipt (TracK2)cceeeeeeeeeeeeeeeeeeeeeeeeeeeees 108
Appendix P. Pinless Debit Transaction ReCeipL............ccceesrrrssssssssssssssssssssssssssssssssssssas 111
Appendix Q. ACH Transaction Receipt (Check Not Present)..............cccusssssssmeeeeennnnas 113
Appendix R. ACH Transaction Receipt (Check Physically Present)cc...... 115

Page 7 of 117

eSELECTplus PHP API November 6, 2012

*** PLEASE READ CAREFULLY****

You have a responsibility to protect cardholder and merchant related confidential
account information. Under no circumstances should ANY confidential information
be sent via email while attempting to diagnose integration or production

issues. When sending sample files or code for analysis by Moneris staff, all
references to valid card numbers, merchant accounts and transaction tokens
should be removed and or obscured. Under no circumstances should live
cardholder accounts be used in the test environment.

Page 8 of 117

eSELECTplus PHP API November 6, 2012

1. About this Documentation

This document describes the basic information for using the PHP API for sending credit card transactions. In
particular, it describes the format for sending transactions and the corresponding responses you will receive.

2. System and Skill Requirements

In order to use the PHP API your system will need to have the following:

1. PHP 4 or later

2. Port 443 open

3. OpenSSL

4. cURL - PHP interface - this can be downloaded from http://curl.haxx.se/download.html

As well, you will need to have the following knowledge and/or skill set:
1. PHP programming language

Note:

It is important to note that all Merchants and Service Providers that store, process, or transmit cardholder data must
comply with PCI DSS and the Card Association Compliance Programs. However, certification requirements vary by
business and are contingent upon your "Merchant Level" or "Service Provider Level". Failure to comply with PCI
DSS and the Card Association Compliance Programs may result in a Merchant being subject to fines, fees or
assessments and/or termination of processing services. Non-compliant solutions may prevent merchants boarding
with Moneris Solutions.

As a Moneris Solutions client or partner using this method of integration, your solution must demonstrate
compliance to the Payment Card Industry Data Security Standard (PCI DSS) and/or the Payment Application Data
Security Standard (PA DSS). These standards are designed to help the cardholders and merchants in such ways
as they ensure credit card numbers are encrypted when transmitted/stored in a database and that merchants have
strong access control measures.

For further information on PCI DSS and PA DSS requirements, please visit http://www.pcisecuritystandards.org.

For more information on how to get your application PCI-DSS compliant, please contact our Integration Specialists
and visit https://developer.moneris.com to download the PCI-DSS Implementation Guide.

3. Verified by Visa

Verified by Visa (VbV) is a program initiated by Visa. Before approving a transaction eSELECTplus and the Bank
that issues the Visa credit cards will attempt to authenticate the cardholder through the use of a password, similar to
a debit PIN. When an authentication is attempted the merchant is protected from chargebacks.

If you have enrolled in Verified by Visa (VbV) with Moneris and eSELECTplus, please also refer to the PHP VbV /
SecureCode MPI document found at: https://developer.moneris.com

4. MasterCard SecureCode

MasterCard SecureCode (MCSC) is a new feature offered by MasterCard. Merchants who have enrolled in this
program with Moneris and eSELECTplus will be able to offer their customers added protection against unauthorized
credit card use, as well as protect themselves from fraud-related chargebacks. Cardholders that have applied for
SecureCode with their issuing bank will be able to use this password similar to a debit PIN number for online
transactions with participating online merchants.

Before approving a transaction, eSELECTplus and the Bank that issued the MasterCard will authenticate the
cardholder through the use of this password. For merchants who have enrolled in SecureCode, please also refer to
the PHP VbV / SecureCode MPI document found at: https://developer.moneris.com

Page 9 of 117

eSELECTplus PHP API November 6, 2012

5. What is the Process | will need to follow?

You will need to follow these steps.
1. Do the required development as outlined in this document
2. Test your solution in the test environment
3. Activate your store
4. Make the necessary changes to move your solution from the test environment into production as outlined in
this document

6. Transaction Types and Transaction Flow

eSELECTplus supports a wide variety of transactions through the API. Below is a list of transactions supported by
the API, other terms used for the transaction type are indicated in brackets.

Basic Transactions

Purchase — (sale) The Purchase transaction verifies funds on the customer’s card, removes the funds and readies them
for deposit into the merchant’s account.

PreAuth — (authorisation / preauthorisation) The PreAuth verifies and locks funds on the customer’s credit card. The
funds are locked for a specified amount of time, based on the card issuer. To retrieve the funds from a PreAuth so that
they may be settled in the merchant’s account a Capture must be performed.

ReAuth — (reauthorisation) A PreAuth may only be Captured once. If the PreAuth is Captured for less than the original
amount, the ReAuth will allow the merchant to verify and lock the remaining funds on the customer’s credit card, so they
may also be Captured. To retrieve the funds from a ReAuth so that they may be settled in the merchant’s account, a
Capture must be performed.

Capture — (Completion / PreAuth Completion) Once a PreAuth is obtained the funds that are locked need to be retrieved
from the customer’s credit card. The Capture retrieves the locked funds and readies them for settlement into the
merchant’s account.

Void — (Correction / Purchase Correction) Purchases and Captures can be voided the same day* that they occur. A Void
must be for the full amount of the transaction and will remove any record of it from the cardholder’s statement.

Refund — (Credit) A Refund can be performed against a Purchase or a Capture to refund any part, or all of the transaction.

Independent Refund — (Credit) An Independent Refund can be performed to credit money to a Credit Card. This
transaction does not require a prior Purchase or Capture. Please note, the Independent Refund transaction may or may
not be supported on your account. If you receive a transaction not allowed error when attempting an independent refund,
it may mean the transaction is not supported on your account. If you wish to have the Independent Refund transaction
type temporarily enabled (or re-enabled), please contact the Service Centre at 1-800-471-9511.

Force Post (Offline Sale) - The Force Post is used when a merchant obtains the authorization number directly from the
issuer using a phone or any third party authorization method. The Force Post retrieves the locked funds and readies them
for settlement into the merchant’s account.

Batch Close — (End of Day / Settlement) When a Batch Close is performed it takes the monies from all Purchase, Capture
and Refund transactions so they will be deposited or debited the following business day. For funds to be deposited the
following business day the batch must close before 11pm EST.

Open Totals — (Current Batch Report) When an Open Totals is performed it returns the details about the currently open
Batch. This transaction is similar to the Batch Close, though it does not close the Batch for settlement.

Card Verification — (Account Status Inquiry) Card Verification verifies the validity of the credit card, expiry date and any
additional details, such as the Card Verification Digits or Address Verification details. It does not verify the available
amount or lock any funds on the credit card.

* A Void can be performed against a transaction as long as the batch that contains the original transaction remains open.

Page 10 of 117

eSELECTplus PHP API

November 6, 2012

Process Flow for Basic Credit Card Transactions

Void *

Refurd =

Woid *

Refund **

Woid *

Rafund **

. Woid *
Purchase
Refund **
PreAuth Capture
Refuth I3 Capture
Cavv Prefuth = Captura
! Woid *
Cawvv Purchase —
| Refund ™
o Woid *
Force Post
Rafund ™

Transactions with no Follow-on required

Indepandent Refund

Batch Close

Open Totals

Card Verfication

* Prior to the Batch closing
** After Balch is closed

Page 11 of 117

eSELECTplus PHP API

November 6, 2012

Process Flow for PreAuth / ReAuth / Capture Transactions

L

Mearchant processas
Authorization
ransaction
Amount = 5100.00

Merchant processes
Completion
transaction

Amount = S0,

Should the
transaction be
fully reversed?

Merchant
processas
Completion
transaction
Amount = $80.00

»

Moneris system
will auto reverse
remaining amount

capturad?

Marchant processas
Re-Authorization
transaction

Amount = $20.00

Merchant

processes
Completion
transaction

Amount == 520.00

k-
b End)

N

Partial
Completion?

Merchant processes
Completion
transaction

Amount == 5100.00

Page 12 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Transactions

The following Encrypted Transactions are available:
e Encrypted Purchase (sale)
Encrypted PreAuth (authorisation / preauthorisation)
Encrypted Independent Refund (Credit)
Encrypted Force Post (Offline Sale)
Encrypted Card Verification (Account Status Inquiry)

These transaction types are identical to those listed above in the Basic Transaction set, but in this case the card data
must be entered via a Moneris provided encrypted MSR device.

Please note, the Encrypted Transactions may only be used with a Moneris provided encrypted mag swipe
m reader. To enquire about the encrypted MSR, please call the Service Centre at 1-866-423-8475.

NOTE ' Thjs transaction set applies to card not present transactions. Please refer to the Encrypted Mag Swiped
Transactions for the swiped and manually keyed card present transaction set.

Process Flow for Encrypted Credit Card Transactions

-] Woid *
Encrypted Purchasze
— Refund **
o Wold *
Encrypted Preduth | Capture —
— | Refund **
Wold *
Encrypted Force Post | |—
B Refund **

Transactions with no Follow-on reguired

Encrypted Independeant Refund

Ercrypted Card Verfication

* Prior to the Batch closing
** After Batch is closed

Page 13 of 117

eSELECTplus PHP API November 6, 2012

Mag Swipe Transactions

Mag Swipe Purchase — (sale) The Mag Swipe Purchase transaction requires a credit card to be swiped. It then
verifies funds on the customer’s card, removes the funds and readies them for deposit into the merchant’s account.

Mag Swipe PreAuth — (authorisation / preauthorisation) The Mag Swipe PreAuth requires a credit card to be
swiped. It then verifies and locks funds on the customer’s credit card. The funds are locked for a specified amount
of time, based on the card issuer. To retrieve the funds from a Mag Swipe PreAuth so that they may be settled in
the merchant’s account a Mag Swipe Capture must be performed.

Mag Swipe Capture — (Completion / PreAuth Completion) Once a Mag Swipe PreAuth is obtained the funds that are
locked need to be retrieved from the customer’s credit card. The Mag Swipe Capture retrieves the locked funds
and readies them for settlement into the merchant’s account.

Mag Swipe Void — (Correction / Purchase Correction) Mag Swipe Purchases and Mag Swipe Captures can be
voided the same day* that they occur. A Mag Swipe Void must be for the full amount of the transaction and will
remove any record of it from the cardholder’s statement.

Mag Swipe Refund — (Credit) A Mag Swipe Refund can be performed against a Mag Swipe Purchase or a Mag
Swipe Capture to refund any part, or all of the transaction.

Mag Swipe Independent Refund — (Credit) A Mag Swipe Independent Refund requires a credit card to be swiped. It
can be performed to credit money to this particular credit card. This transaction does not require a prior Mag Swipe
Purchase or Mag Swipe Capture. Please note, the Independent Refund transaction may or may not be supported
on your account. If you receive a transaction not allowed error when attempting an independent refund, it may mean
the transaction is not supported on your account. If you wish to have the Independent Refund transaction type
temporarily enabled (or re-enabled), please contact the Service Centre at 1-800-471-9511.

* A Void can be performed against a transaction as long as the batch that contains the original transaction remains open.

Process Flow for Mag Swipe Credit Card Transactions

Mag Swipe Purchase > Mag Swipe Void *

v

hag Swipe Purchase Mag Swipe Refund ™

-] Mag Swipe Yoid *

Mag Swipe PreAuth » Mag Swipe Completion —

e Mag Swipe Refund **

Transactions with no Follow-on reguired

Mag Swipe Independent Refund

* Prior to the Batch closing
** After Batch is closed

Page 14 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Mag Swipe Transactions

The following Encrypted Mag Swipe Transactions are available:
e Encrypted Mag Swipe Purchase (sale)
Encrypted Mag Swipe PreAuth (authorisation / preauthorisation)
Encrypted Mag Swipe Independent Refund (Credit)
Encrypted Mag Swipe Force Post (Offline Sale)

These transaction types are identical to those listed above in the Mag Swipe Transaction set, but in this case the card
data must be swiped or keyed in via a Moneris provided encrypted mag swipe reader

& Please note, the Encrypted Mag Swipe Transactions may only be used with a Moneris provided encrypted
NOTE mag swipe reader. To enquire about the encrypted MSR, please call the Service Centre at 1-866-423-
8475.

Process Flow for Encrypted Mag Swipe Credit Card Transactions

J—r Mag Swipe Void *

Encrypted Mag Swipe Purchase

] Mag Swipe Refund *

4 Mag Swipe Void *

Encrypted Mag Swipa PreAuth #| | Mag Swipa Completion | ——

L» Mag Swipe Refund *

J—» Mag Swipe Void *
Encrypied Mag Swipe Force Post

o Mag Swipe Refund **

Transactions with no Follow-on required

Encrypied Mag Swipe Independent Refund

-

Prior to the Batch closing
** After Batch is closed

Page 15 of 117

eSELECTplus PHP API November 6, 2012

Pinless Debit Transactions

Pinless Debit Purchase — (sale) A Pinless Debit Purchase transaction verifies funds on the customer’s card,
removes the funds and readies them for deposit into the merchant’s account

Pinless Debit Refund — (Credit) A Pinless Debit Refund transaction can be performed against a Pinless Debit
Purchase. No amount is required because the Pinless Debit Refund is always for the full amount of the original
transaction.

Process Flow for Pinless Debit Transactions

Pinless Daebit Purchasa | Pinless Dabit Refund *

* Prior to the Batch closing

ACH Transactions

ACH Debit — The ACH Debit transaction verifies and collects the customer’s bank account information, removes the
funds directly from their bank account and readies them for deposit into the merchant’s account.

ACH Reversal — The ACH Reversal transaction can be performed against a previously completed ACH Purchase
transaction, the full amount of the original ACH Debit transaction will be refunded. An ACH Reversal may only be
performed as long as the ACH Debit was performed within the last 3 months.

ACH Credit — The ACH Credit transaction verifies and collects the customer’s bank account information to allow the
merchant to transfer funds from their own bank account directly into the customer’s bank.

ACH Financial Inquiry — The ACH Fi Inquiry allows the merchant to submit a routing number and verify which
Financial Institution it belongs to. This transaction also allows the merchant to verify whether or not this is a valid
routing number before submitting an ACH Debit or Credit transaction.

Process Flow for ACH Transactions

ACH Debit - ACH Reversal ®

Transactions with no Follow-on required

ACH Credit

ACH Financial Ingquiry

* Prior or After the Batch closing

Page 16 of 117

eSELECTplus PHP API November 6, 2012

7. Basic Transaction Examples

Included below is the sample code that can be found in the “Examples” folder of the PHP API download.

Purchase (basic)

In the Purchase example we require several variables (store_id, api_token, order_id, amount, pan, expdate, and
crypt_type There are also a number of optional fields, such as cust_id, dynamic_descriptor, and two optional Level
2 variables (commcard_invoice and commcard_tax_amount) available for Corporate Purchasing Cards. Please refer
to Appendix A. Definition of Request Fields for variable definitions.

<?php

require "../mpgClasses.php";

/************************ Request variables **********************************/
$store_id=$argv([1l];

$api_token=$argv([2];

JRKKkkkkkkkkkkkkkkkkkkkk*k Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid=Sargv([3];
Samount=$argv[4];
Span=Sargv[5];
Sexpiry_date=$argv[6];

JRXKXKKXKKXKKKKKKKKKKXKAKXAXA* Transaction Array XA XXX XX XXX XX XX KX KK KK KK KK KK KKKKKKAK [

$txnArray=array (type=>'us_purchase',
order_id=>S$orderid,
cust_id=>"'cust"',
amount=>S$amount,
pan=>$pan,
expdate=>$expiry_date,
crypt_type=>'7",
commcard_invoice=>'Invoice 5757FRJ8"',
commcard_tax_amount=>'0.15",
dynamic_descriptor='online sale'

)i

JRHEARK KKK KKK KKK AKAK XK FAAXX Transact1on ODFECh %% %k H ok &k xk sk k& xkdok & & %k Fok & % %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK K KKK AKK KKK I AKX X RequUest ODFECT **xH k& %k kdok sk &k k ok 4 & %k ok ok & %k Kok & & %k K/

$mpgRequest = new mpgRequest ($mpgTxn) ;

JERKKXKKKKKKKKKKKKKKKAXAXAX MPGHELLPSPOSt Object XXX XXX XX XX KX XX KK KK KK KK KKKKKKAK [

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JXKKXKKXKKKKKKKKKKKKXKKXKKXXAX ReSPONSE ODJECt FAXXXXXXXX XX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . SmpgResponse->getCardLevelResult());
?>

Page 17 of 117

eSELECTplus PHP API November 6, 2012

PreAuth (basic)

The PreAuth is virtually identical to the Purchase with the exception of the transaction type. It is ‘us_preauth’
instead of ‘us_purchase’. Like the Purchase example, PreAuth’s require several variables (store_id, api_token,
order_id, amount, pan, expdate, and crypt_type). There are also optional fields, such as cust_id and
dynamic_descriptor. Please refer to Appendix A. Definition of Request Fields for variable definitions.

A PreAuth transaction must be reversed if it is not to be captured. To reverse an authorization, please refer to the
Capture transaction. If you have any questions regarding uncaptured authorization transactions, please refer to the
Service Centre at 1-800-471-9511. Please use the ‘us_card_verification’ transaction type if the intent is to simply
verify the card. For a process flow, please refer to Process Flow for PreAuth / ReAuth / Capture Transactions.

<?php

require "../mpgClasses.php";

JRHEHRKK KKK K KKK KK KK IR AKX RequUest Variables %% &k kk &k xkdok & & xkdok & & %k kk &k & xkkk %% /

$store_id="monusga002";
$Sapi_token="gatoken";

J KKKk kkkkkkkkkkkkkkkkkk*x Transaction Variables *x %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid="preauth_".date("dmy-G:i:s");
Samount="1.00";
Span="4242424242424242";
Sexpdate="1111";

JERXKXKKKKKKKKKKKKKKXKAKXAXX* Transaction Array XA XXX XXX XXX XXX KX KK KK KK KK KK KKKKKKAK [

StxnArray=array (type=>'us_preauth',
order_id=>S$orderid,
cust_id=>"'cust',
amount=>$amount,
pan=>$pan,
expdate=>$expdate,
crypt_type=>'7",
dynamic_descriptor='online sale'

)i

J KKK KK KKK K KKK ARA KKK FARAXX Transact1on ODFECh %% %k H ok &k xkdok k& %k dok & & x ok Hok & % %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK K KKK KK XK IR AKX ReqUeST ODFECT * % %Kk & %k kdok sk ok ok o & %k Kok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KK F AKX XK A XX MPGHELPSPOST ODFECT * % %k H ok k% ok ok o & %k ok ok & %k Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JXKKXKKKKKKKKKKKKKKXKKXKKXKAX ReSPONSE ObDJeCt *AXXXXXXXXXX KK KK KK KK KK KKKKKKKKKKAK [

$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
?>

Page 18 of 117

eSELECTplus PHP API November 6, 2012

ReAuth

The ReAuth is virtually identical to the PreAuth with the exception of the transaction type. It is ‘us_reauth’ instead
of ‘us_preauth’. Like the PreAuth example, ReAuth’s require several variables (store_id, api_token, order_id,
amount, orig_order_id, txn_number, and crypt_type). There are also optional fields, such as cust_id and
dynamic_descriptor. Please refer to Appendix A. Definition of Request Fields for variable definitions.

Please note, a PreAuth may only be Captured once for less than, equal to, or greater than the original PreAuth
amount. If the PreAuth is captured for less than its total amount, then a ReAuth is first required to be able to
capture the remainder. The ReAuth references the original transaction by the orig_order_id and will only allow the
merchant to re-authorise funds on the credit card used in the original transaction for no more than the upcaptured
amount.

For a process flow, please refer to Process Flow for PreAuth / ReAuth / Capture Transactions.
<?php
require "../mpgClasses.php";

JRHEHRKK KKK K KKK KK XK IR AKX RequUest Variables %% &k kk &k xk sk & & xk ok & & xkkk &k & xkk k%% /

$store_id=$argv([1l];
$api_token=$argv([2];

[KKKk Kk kkkkkkkkkkkkkkkk*k Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkr /

Sorderid=$argv([3];
$orig_order_id=$argv[4];
$txn_number=$argv([5];
Samount=$Sargv[6];
Scrypt=Sargv([7];

JRXKXKKKKKKKKKKKKKKXKKAKXAXX* Transaction Array XA XXX XXX XXX XXX KX KK KK KK KK KK KKKKKKAK [

$txnArray=array (type=>'us_reauth',
order_id=>S$orderid,
cust_id=>"'cust',
orig_order_id=>$orig_order_id,
txn_number=>$txn_number,
amount=>S$amount,
crypt_type=>"'7"

)i

J KKK KKK KKK KKK KKK FRAXX Transact 10N ODFECh %% %k Hok &k x ok sk k& xkdok k& %k Fok & & %k Kook /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK K KKK KK XK I KKK X ReqUeSt ODFECT * %k H ok & %k k ok sk sk koo o & %k ok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KKK KX F AKX X MPGHELPSPOST ODFECT * % % % H ok k& ok ook o &k ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $SmpgRequest) ;

JRHEKKK KKK KKK KKK KKK KKK KA XX ReSPONSE ODF@CE * %Kk 4 %k k ok ok sk ok ok o & %k ok & X XK Kok & X % KKk [

$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . S$mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . SmpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
?>

Page 19 of 117

eSELECTplus PHP API November 6, 2012

Capture

The Capture transaction is used to secure the funds locked by a PreAuth or ReAuth transaction. When sending a
‘us_completion’ request you will need two pieces of information from the original PreAuth — the order_id and the
txn_number from the returned response. There are also two optional Level 2 variables (commcard_invoice and
commecard_tax_amount) that may be submitted for Corporate Purchasing Cards.

A PreAuth or ReAuth transaction can only be captured ones. Please refer to the ReAuth transaction for more
information on how to perform multiple Captures.

To reverse the full amount of the PreAuth, please use the Capture transaction with a dollar amount of “0.00". For a
process flow, please refer to the Process Flow for PreAuth / ReAuth / Capture Transactions.

<?php
require "../mpgClasses.php";

JRXKXKKKKKKKKKKKKKKXKAKXAXA* Request Variables *A ¥ XX XX XXX XXX XXX KK KKKKKKKKKKKKKKAK [

Sstore_id=$argv[1l];
Sapi_token=S$Sargv([2];

JREK KKK KKKk kkkkkkkkkkk*kk* Transaction Variables *rxxkkkkkkkkkkkkkkkkkkkkkkkkkk /

Sorderid=Sargv([3];
$txnnumber=S$argv[4];

$Scompamount=$argv([5];

/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_completion',

order_id=>Sorderid,

comp_amount=>$compamount,

txn_number=>$txnnumber,

crypt_type=>'7",

commcard_invoice=>'Invoice 5757FRJ8"',

commcard_tax_amount=>'0.15"

)i

JRHEARK KKK KK KKK KKK FAAXX Transact1ion ODFeCh %% %k Hok & & xkdok & & %k ok &k & x KKk & X X KKk A K [

SmpgTxn = new mpgTransaction($txnArray);

JRXKXKKKKKKKKKKKKKKXKKXKAXAX Request ObDJect FAXXXXXXXXX XX KX KK KK KK KK KK KK KK KKKKKKAK [

$mpgRequest = new mpgRequest ($mpgTxn) ;

JREXXKKKKKKKKKKKKKKKKXXXXXX HELPSPOSE ODJECt XXX XXXXXXXX XX XX XXX X XX XX XXX XXX XXX XK/

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $SmpgRequest) ;

JEXXKXKKKKKKKKKKKKKKKKXKKXKAX ReSPONSE ObDJeCt *AXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

KKK KKK F KKK KK KKK KKK KKK R@CEIPE KK H KK A K Ak ok o & ok o K Kok o K KK ok K KKKk & K kK Kk

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 20 of 117

eSELECTplus PHP API November 6, 2012

Void

The Void (us_purchasecorrection) transaction is used to cancel a transaction that was performed in the current
batch. No amount is required because a Void is always for 100% of the original transaction. The only transactions
that can be Voided are Captures and Purchases. To send a ‘us_purchasecorrection’ the order_id and txn_number
from the ‘us_completion’ or ‘us_purchase’ are required.

<?php

require "../mpgClasses.php";

JREXXKKKKKKKKKKKKKKXKAXAX A% Request Variables *A ¥ XX XXXk XXX XX KX KK KK KK KK KK KKKKKKAK [

$store_id=$argv([1l];
$api_token=$argv([2];

J KKKk kkkkkkkkkkkkkkkkkk*x Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkr /

Sorderid=$argv([3];
$Stxnnumber=S$argv[4];

JRHEARKK KKK K KKK AKK KKK FKRAXX Transaction Array * %% %k Hk & & xk sk & & xk ok & %k kk & & xkk k%% /

StxnArray=array (type=>'us_purchasecorrection',
order_id=>Sorderid,
txn_number=>S$txnnumber,
crypt_type=>"'7"

)i

JXKKXKKKKKKKKKKKKXKAKAXA %% Transaction Object **XXXXXXXXXXXX KK KK KK KK KK KKKKKKAK [

SmpgTxn = new mpgTransaction($txnArray);

JREXXKKXKKKKKKKKKKKKXKXXXXAXX Request ODJecCt FAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXA XK/

SmpgRequest = new mpgRequest ($SmpgTxn) ;

JRKKKKKKKKKKKKKKKKXKAXAXA* MPGHELLPSPOSt ObJject XXX XXXXXXXXX XX KK KK KK KK KKKKKKAK [

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JKHEKAK KKK KK KKK KKK XK I KA XX RESPONSE ODF@CE 3% H k4 % %k ok ok &k ok o & %K ok ok K XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . $SmpgResponse->getTicket());

print ("\nTimedOut = " . SmpgResponse->getTimedOut ());

?>

Page 21 of 117

eSELECTplus PHP API November 6, 2012

Refund

The Refund will credit a specified amount to the cardholder’s credit card. A Refund can be sent up to the full value
of the original Capture or Purchase. To send a ‘us_refund’ you will require the order_id and txn_number from the
original ‘us_completion’ or ‘us_purchase’.

<?php

require "../mpgClasses.php";

JREXXKKKKKKKKKKKKKKXKAXAX A% Request Variables *¥ ¥ XX XX XXX XXX XXX KK KK KK KK KK KKKKKK KK [

Sstore_id=Sargv[1l];
Sapi_token=$argv[2];

JREK KKK KKKk kkkkkkkkkkk*kk* Transaction Variables *rxxkkkkkkkkkkkkkkkkkkkkkkkkxk /

Sorderid=Sargv([3];
Stxnnumber=$argv[4];
Samount=$argv[5];

JRHEARK KK KKK K KKK AKK KKK FKRAXX Transaction Array * %% %k kk &k ak sk & & xok ok & & %k kok &k & xkk k%% /

StxnArray=array (type=>'us_refund',
order_id=>Sorderid,
amount=>S$amount,
txn_number=>$txnnumber,
crypt_type=>'7"

)i

/************************ Transaction Object *******************************/
SmpgTxn = new mpgTransaction($txnArray);

/************************ Request Object **********************************/
SmpgRequest = new mpgRequest ($SmpgTxn) ;

/************************ mngttpsPost Object ******************************/
SmpgHttpPost =new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JEXXXKKKKKKKKKKKKKKXKKXKXKXXAX ReSPONSE ObDJeCt *AXXXXXXXXXX KK KK KK KK KK KKKKKKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount ());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . SmpgResponse->getTicket());

print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

7>

Page 22 of 117

eSELECTplus PHP API November 6, 2012

Independent Refund

The Independent Refund (us_ind_refund) will credit a specified amount to the cardholder’s credit card. The
Independent Refund does not require an existing order to be logged in the eSELECTplus gateway; however, the
credit card number and expiry date will need to be passed. The Independent Refund transaction requires several
variables (store_id, api_token, order_id, amount, pan, expdate, and crypt_type). There are also optional fields,
such as cust_id and dynamic_descriptor. The transaction format is almost identical to a Purchase or a PreAuth.

The Independent Refund transaction may or may not be supported on your account. If you receive a
m transaction not allowed error when attempting an independent refund, it may mean the transaction is
NOTE not supported on your account. If you wish to have the Independent Refund transaction type temporarily
enabled (or re-enabled), please contact the Service Centre at 1-800-471-9511.

<?php
require "../mpgClasses.php";

JREXXKKKKKKKKKKKKKKXKXKXAXX* Request Variables A ¥ XXXk XXX XXX XXX KK KK KK KK KK KKKKKK KK [

$store_id="monusga002";
Sapi_token="gatoken";

J KKKk kkkkkkkkkkkkkkkkkk*x Transaction Variables *x %k kkkkkkkkkkkkkkkkkkkkkkkkkr /

Sorderid="ind_refund_".date ("dmy-G:i:s");
$custid="customerl";

Samount="1.00";

Span="4242424242424242";

Sexpdate="1111";
Sdynamic_descriptor="'location #1234"';

JRHEKKK KKK AKX KKK KKK FKRAXX Transaction Array * %% %k kk &k xkdok & & xk ok & & %k kok k& xkk k%% /

StxnArray=array (type=>'us_ind_refund',
order_id=>S$orderid,
cust_id=>$custid,
amount=>$amount,
pan=>$pan,
expdate=>$expdate,
crypt_type=>'7",
dynamic_descriptor=>$dynamic_descriptor
)i

JXXXKKKKKKKKKKKKKKXKAXXAX %% Transaction Object **X XXX XXXXXXXXKKKKKKKKKKKKKKKKAK [

SmpgTxn = new mpgTransaction($txnArray);

JRHEARKK KKK K KKK KK XK I KKK X ReqUeSt ODFECT * % % H k& %k kdok sk sk ok ok o & %k ok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KKK KX KA A XX MPGHEEPSPOST ODFECT * % %k H ok k& koo ok & %k ok ok & %k ok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEARKK KKK KK KKK KKK KKK KA XX ReSPONSE ODF@CE * % Kk 4% %k ok ok sk ok ok o & %Kok ok X XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardTIype());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());

2>

Page 23 of 117

eSELECTplus PHP API November 6, 2012

Force Post

The Force Post (us_forcepost) transaction is used when a merchant obtains the authorization number directly from
the issuer using a phone or any third party authorization method. The Force Post does not require an existing order
to be logged in the eSELECTplus gateway; however, the credit card number, expiry date and the authorization
number will need to be passed. There are also optional fields, such as cust_id and dynamic_descriptor.

<?php
require "../mpgClasses.php";

JEXKXKKKKKKKKKKKKKKKKKKKXXXXX XX Request Variables XX ¥ XXXk XXX XXX XXX XXXXXXXXXXXX XXX/

Sstore_id="'monusqga002"';
Sapi_token='gatoken';

JREK KKK kK Kk kkkkhkkkkkkkkk*x* Transactional Variables ***xkkkkkkkkkkkkkkkkhkkkkkkkkx /

Stype='us_forcepost';
Scust_id='CUST13343"';
Sorder_id='ord-"'.date ("dmy-G:i:s");
$amount='10.00";
Span="'4242424242424242";
Sexpiry_date='0812";
Sauth_code="'123456";

Scrypt="'7";
Sdynamic_descriptor="'location #1234"';

JRHEHRKK KKK KK KKK KKK KKk A% Transactional Associative Array ***xxxk&xxkkkkxxkkkxxx /

$txnArray=array ('type'=>$type,
'order_id'=>$order_id,
'cust_id'=>$cust_id,
'amount '=>$amount,
'pan'=>S$pan,
'expdate'=>$expiry_date,
'auth_code'=>$auth_code,
'crypt_type'=>$crypt,
'dynamic_descriptor'=>$dynamic_descriptor
)i

JERXKXKKKKKKKKKKKKKKKKXKKXKXAXX %% Transaction Object X ¥ XXX XXXX XX KX KKKKKKKKKKKKKKAK [

$mpgTxn = new mpgTransaction($txnArray);

[RHK KK KK F KKK KK KKK KKK KA KKK I AKX X RequUest ODFJeCT **xH k& % xkdok sk &k kdok & & x kK ok & & x KKk A % /

SmpgRequest = new mpgRequest ($mpgTxn) ;

JRHA KK KKK K KKK K KKK K x KA A% HTTPS POsSt ODJeCt * %% % %k sk k& kokdok k& %k ok & & x KKk A %/

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

[KKK KK KKK KK KKK KK KK KKK KKK KKK XK RESPONSE * KKK K KK Kok o & kK Kok ok K KKKk A K XK H A K XK H KKK]

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nISO = " . S$mpgResponse->getISO());

print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
?>

Page 24 of 117

eSELECTplus PHP API

November 6, 2012

8. Basic Transactions with Extra Features - Examples

In the previous section the instructions were provided for the basic transaction set. eSELECTplus also provides
several extra features/functionalities for the basic transactions. These features include storing customer and order
details, Verified by Visa / SecureCode and sending transactions to the Recurring Billing feature. Verified by Visa /

SecureCode and Recurring Billing must be added to your account, please call the Service Centre at 1-866-423-8475

to have your profile updated.

Purchase (with Customer and Order details)

Below is an example of sending a Purchase with the customer and order details. If one piece of information is sent
then all fields must be included in the request. Unwanted fields need to be blank. Please see Appendix C. CustInfo

Fields for description of each of the fields. The identical format is used for PreAuth with the exception of
transaction type which changes from ‘us_purchase’ to ‘us_preAuth’. Customer details can only be sent with
Purchase and PreAuth. It can be used in conjunction with other extra features such as VBV/MCSC and Recurring
Billing. Please note that the mpgCustinfo fields are not used for any type of address verification or

fraud check.
<?php
require "../mpgClasses.php";

JRHEARKK KKK K KKK KK KKK KA XX RequUest Variables %% &k kk &k xkdok & & xk ok & & xkkok &k & xkkk % % /

$store_id=$argv([1l];
$api_token=$argv([2];

J KKKk kkkkkkkkkkkkkkkkkk*x Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid=$argv([3];
Samount=$Sargv[4];
Span=Sargv[5];
Sexpiry_date=$argv[6];

JERKKXKKKKKKKKKKKKKKKAKAXAX CUSLINFO ObJeCt *AXXXXXXXXKX KX KK KK KK KK KK KK KKKKKKAK [

$mpgCustInfo = new mpgCustInfol();
/********************* Set E,mail and Instructions **************/

Semail ='Joel@widgets.com';
SmpgCustInfo->setEmail (Semail);

$instructions ="Make it fast";
SmpgCustInfo->setInstructions ($instructions);

[RHEHRKK K KKK KKK KKKk X xKHF*k Create Billing Array and set it ***xxxxsskx/

$Sbilling = array(first_name => 'Joe',
last_name => 'Thompson',
company_name => 'Widget Company Inc.',
address => '111 Bolts Ave.',
city => 'Toronto',
province => 'Ontario',
postal_code => 'M8T 1T8',
country => 'Canada',
phone_number => '416-555-5555",
fax => '416-555-5555",
taxl => '123.45"',
tax2 => '12.34"',
tax3 => '15.45"',
shipping_cost => '456.23");

$mpgCustInfo->setBilling($billing);
/********************* Create Shlpplng Array and Set lt **********/

$shipping = array(first_name => 'Joe',
last_name => 'Thompson',
company_name => 'Widget Company Inc.',
address => '111 Bolts Ave.',
city => 'Toronto',
province => 'Ontario',
postal_code => 'M8T 1T8',

Page 25 of 117

eSELECTplus PHP API

November 6, 2012

country => 'Canada',
phone_number => '416-555-5555",
fax => '416-555-5555",

taxl => '123.45"',

tax2 => '12.34"',

tax3 => '15.45"',

shipping_cost => '456.23");

SmpgCustInfo->setShipping ($shipping) ;
/********************* Create Item Arraya and Set them **********/

$iteml = array (name=>'item 1 name',
quantity=>'53",
product_code=>'item 1 product code',
extended_amount=>'1.00");

SmpgCustInfo->setItems ($iteml) ;
$item2 = array(name=>'item 2 name',
quantity=>'53",
product_code=>"item 2 product code',

extended_amount=>'1.00");

SmpgCustInfo->setItems ($item2) ;

JRXXKKKKXKKKKKKKKKKXKAKXAXX* Transaction Array XA XXX XXX XX XX XX KX KK KKKKKKKKKKKKKKAK [

StxnArray=array (type=>'us_purchase',
order_id=>$orderid,
cust_id=>"'cust',
amount=>$amount,
pan=>$pan,
expdate=>$expiry_date,
crypt_type=>'7",
commcard_invoice=>'Invoice 5757FRJ8"',
commcard_tax_amount=>'0.15",
dynamic_descriptor='online sale'

)i

JRHEARK KKK KK KKK KKK FKRAXX Transact 10N ODFeCh % % %k H ok &k xk sk k& %k dok & & %k dok & & %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

/************************ Set Custlnfo Object *****************************/
SmpgTxn->setCustInfo ($mpgCustInfo) ;

/************************ Request Object **********************************/
SmpgRequest = new mpgRequest ($SmpgTxn) ;

/************************ mngttpsPost Object ******************************/
SmpgHttpPost =new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JXEXKXKKKKKKKKKKKKKKKKXKKXXAX ReSpPONSe ObDJeCt *AXXXXXXXX XX KKKKKK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . SmpgResponse->getTicket());

print ("\nTimedOut = " . SmpgResponse->getTimedOut ());

print ("\nCardLevelResult = " . SmpgResponse->getCardLevelResult());
7>

Page 26 of 117

eSELECTplus PHP API November 6, 2012

Purchase (with Verified by Visa / MasterCard SecureCode)

Below is an example of sending a Purchase with the Verified by Visa / SecureCode extra fields. The ‘cavv’is
obtained by using either the Moneris MPI or a third party MPI. The format outlined below is identical for a PreAuth
with the exception of the TransType which changes from ‘us_cavv_purchase’ to ‘us_cavv_preauth’. VBV/MCSC
must be added to your account, please call the Service Centre at 1-866-423-8475 to have your profile updated.
The optional customer and order details can be included in the transaction using the method outlined above -
Purchase (with Customer and Order Details).

<?php
require "../mpgClasses.php";

/******************************* Request Varlables ‘k*******************************/
$store_id="'monusga002"';
Sapi_token='gatoken';

/****************************** Transactlonal Variables ***‘k***********************/
$type='us_cavv_purchase';

Sorder_id='apr25testl2’';

Scust_id='customerl"';

Samount='1.00";

Span="'4242424242424242";

Sexpiry_date='1111";

$Scavv="AAABBJgOVhIOVniQE jRWAAAAAAA=";

Scommcard_invoice='Invoice 5757FRJ8';

$commcard_tax_amount="0.15";

/*************************** Transaction Associative Array ************************/
$StxnArray=array (type=>$type,
order_id=>S$Sorder_id,
cust_id=>$cust_id,
amount=>S$amount,
pan=>$pan,
expdate=>$expiry_date,
cavv=>$cavv,
commcard_invoice=>$commcard_invoice,
commcard_tax_amount=>$commcard_tax_amount,
dynamic_descriptor='online sale');

JERKKXKKKKKKKKKKKKKKKKKKKKXKXA XA %% Transaction Object XA XXX XXXXXX XX XKKKKK KK KK KK KKKKAK [

SmpgTxn = new mpgTransaction($txnArray);

JRXKXKKKKKKKKKKKKKKKKKKKKKKXKXXAXX Request ObDJect *AXXXXXXXXXXKK KK KK KK KK KK KK KKKKKKAK [

$mpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK K KKK KKK F KKK x Kk xx HTTPS Post ODJ@Ch % % %k dok sk k kkdook ok &k kdok ok & %k H ok & % %k K /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

[KKK KKK KK KKK KK KKK KKK KKK KKK KKK KKK XK RESPONSE X F KA K A Kok o & %k ok o & %K Kok ok & %K Kok & X %k K/

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());

print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
print ("\nCavvResultCode = " . $mpgResponse->getCavvResultCode());

?>

As part of the VbV response there will be an additional method called getCavvResultCode(). Please refer to
Appendix M. CAVV Result Code for a list of possible values.

Page 27 of 117

eSELECTplus PHP API November 6, 2012

Purchase (with Recurring Billing)

Recurring Billing is a feature that allows the transaction information to be sent once and then re-billed on a
specified interval for a certain number of times. This is a feature commonly used for memberships, subscriptions,
or any other charge that is re-billed on a regular basis. The transaction is split into two parts; the recur information
and the transaction information. Please see Appendix D. Recur and Recur Update Fields for description of each of
the fields. The optional customer and order details can be included in the transaction using the method outlined
above -Purchase (with Customer and Order Details). Recurring Billing must be added to your account, please call
the Service Centre at 1-866-423-8475 to have your profile updated.

<?php
require "../mpgClasses.php";

/************************ Request Variables ***************************/
$store_id=$argv([1l];
$api_token=$argv([2];

/********************* Transactional Variables ************************/
Stype='us_purchase';

Sorder_id=$argv[3];

Scust_id=S$argv[4];

Samount=$argv[5];

$Span=$argv[6];

Sexpiry_date=$argv[7];

Scrypt="'7";

Scommcard_invoice='Invoice 5757FRJ8"';

Scommcard_tax_amount='0.15";

JRHEK KKK KKKk Kk Kk Kk kkkkkkxk*x Rocur Variables **kkkkkxkkkkkkhkkkhkkhkkkkkkkkk*x /

$recurUnit = 'day';
$startDate = '2012/11/30"';
SnumRecurs = '4';
SrecurInterval = '10';
SrecurAmount = '31.00';
$SstartNow = 'true';

/****************************** Recur Array **************************/
SrecurArray = array(recur_unit=>$recurUnit, // (day | week | month | eom)

start_date=>$startDate, //yyyy/mm/dd

num_recurs=>$numRecurs,

start_now=>$startNow,

period => S$recurlnterval,

recur_amount=> S$recurAmount

)i

[KKK KKK H KKK KKK KK KKK ARK KKK I AKX X RECUr ODJECE HH % %K H ok k& x ok dok ok & x K H ok A X x KKk &/

SmpgRecur = new mpgRecur ($recurArray) ;

/***************** Transactional ASSOClath@ Array ********************/
$txnArray=array (
type=>$type,
order_id=>$order_id,
cust_id=>$cust_id,
amount=>S$amount,
pan=>$pan,
expdate=>$expiry_date,
crypt_type=>$crypt,
commcard_invoice=>$commcard_invoice,
commcard_tax_amount=>$commcard_tax_amount,
dynamic_descriptor='online sale'
)i

[KKK K KKK K KKK AKA KKK IR KK KKK AKX * Transaction ObJect ***xxkkkxxkkksxxxskx/

SmpgTxn = new mpgTransaction($txnArray);

JRHEAK KKK KK KKK KK KKK KKK XK I AKX X Set RecUr ObJect *FH &% xkkk& & xkkkkxxkkkx/

SmpgTxn->setRecur ($mpgRecur) ;
/****************************** Request Object **************************/

SmpgRequest = new mpgRequest ($mpgTxn) ;

KKK KKK A K KKK K KKK KK XK AKX MPGHELPSPOSE ObJect * ¥ % * k& & xkkk k& xkkk k% x /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JEREXKXKKKKKKKKKKKKKKKKKKKKKKXKKXKXAK RESPONSE FAXXXXXXXXXXXKKXXKXKKXKKXKXKXKXKXKXKXKXAAAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

Page 28 of 117

eSELECTplus PHP API November 6, 2012

JEKKXKKKKKKKKKKKKKKKKKKKKKKKAKAK RECQIPt FAXA XX KX KX KK KK KKK KKK KK KK KKKKKKAK [

print ("\nCardType = " . SmpgResponse->getCardType());
print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nRecurSuccess = " . $mpgResponse->getRecurSuccess());
print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
?>

As part of the Recurring Billing response there will be an additional method called getRecurSuccess(). This can
return a value of ‘true’ or ‘false’ based on whether the recurring transaction was successfully registered in our

database.

Page 29 of 117

eSELECTplus PHP API November 6, 2012

Purchase (with CVD and AVS - eFraud)

Below is an example of a Purchase transaction with CVD and AVS information. These values can be sent in
conjunction with other additional variables such as Recurring Billing or customer information. With this feature
enabled in your merchant profile, you will be able to pass in these fields for the following transactions
‘us_purchase’, ‘us_preauth’, ‘us_cavv_purchase’, and ‘us_cavv_preauth’. To form CvdInfo please refer to Appendix
I. Card Validation Digits (CVD), to form AvsInfo please refer to Appendix J. Address Verification Service (AVS). To
have the eFraud feature added to your profile, please call the Service Centre at 1-866-423-8475 to have your
profile updated.

We strongly recommend that you include Address Verification (AVS) with all of your manually input transactions
(MOTO/eCommerce). Doing so will ensure transactions are qualifying at the best possible interchange rate and will
minimize costs to accept credit cards. If AVS is not present, the transaction may be assessed a higher interchange
fee.

When testing eFraud (AVS and CVD) you must only use the Visa test card numbers, 4242424242424242 or
4005554444444403, and the amounts described in the Simulator eFraud Response Codes document available at
https://developer.moneris.com

m The CVD Value supplied by the cardholder should simply be passed to the eSelectPlus payment gateway.
Under no circumstances should it be stored for subsequent uses or displayed as part of the receipt

NOTE information.

<?php
require "../mpgClasses.php";

/************************ Request Variables ***************************/
$Sstore_id=$argv[1l];
Sapi_token=$argv[2];

/********************* Transactlonal Varlables ‘k***********************/
Stype='us_purchase';

Sorder_id=$argv[3];

Scust_id=S$argv[4];

Samount=$argv[5];

$Span=$argv[6];

Sexpiry_date=$argv[7];

Scrypt="'7";

$commcard_invoice="'Invoice 5757FRJ8';

$commcard_tax_amount="0.15";

/************************** AVS variables *****************************/
$avs_street_number = '201';

Savs_street_name = 'Michigan Ave';

Savs_zipcode = 'MIMIM1';

/‘k*‘k*********************** CVD Varlables *‘k*‘k*‘k***********************/
$cvd_indicator = '1"';
Scvd_value = '198';

/********************** Avs ASSOClatlve Array *************************/
SavsTemplate = array(
avs_street_number=>$avs_street_number,
avs_street_name =>$avs_street_name,
avs_zipcode => $avs_zipcode
)i

/********************** CVD Associative Array *************************/
$cvdTemplate = array(
cvd_indicator => $cvd_indicator,
cvd_value => $cvd_value
)i

[KKK K KKK KK KKK KK FH KKK FKHF AYS ODJ@CE KK %K Kok ok &k ko ok & %Kok A K KKK A K KKKk k)

SmpgAvsInfo = new mpgAvsInfo (S$SavsTemplate);

[KKK KK KKK KK KKK KK KKK AKX KK CYD ODF@CE K% %K Kok ok & %k ok ok &k ko ok & XK Kok & X X KKk k)

SmpgCvdInfo = new mpgCvdInfo ($cvdTemplate) ;

Page 30 of 117

eSELECTplus PHP API November 6, 2012

/***************** Transactlonal ASSDClath@ Array ********************/
StxnArray=array (
type=>$type,
order_id=>$order_id,
cust_id=>$cust_id,
amount=>$amount,
pan=>$pan,
expdate=>$expiry_date,
crypt_type=>$crypt,
commcard_invoice=>$commcard_invoice,
commcard_tax_amount=>$commcard_tax_amount,
dynamic_descriptor='online sale'
)i
/********************** Transaction Object ****************************/

SmpgTxn = new mpgTransaction($txnArray);

JRKR Kk kkkkkkkkkkkkkkkkkkk Sat AVS and CVD * k% ko k ks kk ok kok ok kK kkokkokkkkkkokk /

SmpgTxn->setAvsInfo ($mpgAvsInfo) ;
SmpgTxn->setCvdInfo ($mpgCvdInfo) ;

JERXXKKKKKKKKKKKKKKKXKXXXXXX Request ObDJect FAXXXXXXXXXXXXXXXXXXXXXXXXXA XK/

SmpgRequest = new mpgRequest ($mpgTxn) ;

JEXXXKKKKKKKKKKKKKXXX XX % HTTPS POSt ObJeCt XXX XXXXXXXXXXXXXXXXXXXXXX XXX/

SmpgHttpPost =new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JEREXKXKKKKKKKKKKKKKKKKKKXKKXKKAK RESPONSE FXXXXXXXXXXXXKXKXXKX KX XXKXKXKKXKKKXAA K/

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . S$mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nAVSResponse = " . $mpgResponse->getAvsResultCode());
print ("\nCVDResponse = " . $mpgResponse->getCvdResultCode());
print ("\nCardLevelResult = " . SmpgResponse->getCardLevelResult());
7>

As part of the eFraud response there will be two additional methods called getAvsResultCode() and
getCvdResultCode(). For a list of possible CVD responses please refer to Appendix I. Card Validation Digits (CVD)
and for a list of AVS responses, please refer to Appendix J. Address Verification Service (AVS).

Page 31 of 117

eSELECTplus PHP API November 6, 2012

Purchase (with Status Check)

The Status Check functionality may be used to verify whether a transaction processed successfully. If once a
transaction is processed no response is received due to communication/technical difficulties, you may resend the
transaction with the Status Check flag set to true. This will then initiate a lookup of the original transaction and
eSelectPlus will verify whether it was processed or not. If the Status Check is set to false, the transaction will
process as a net new transaction.

The Status Check flag is set to true or false at the request level as opposed to being at the transaction level. You
should send the same parameter values for the transaction level fields in the Status Check request, i.e. if you send
a Completion with Status Check, include the same values as the original Completion such as the Order ID, amount,
Txn number, etc. What you will get back is a Status Code and Status Message in the Receipt as shown in the
sample below. A Status Code of 0-49 indicates successful and 50-999 is not successful. The Status Message will
be Found (Status Code of 0-49) or Not Found or null (Status Code of 50-999). When it is found, the other
Response will also return the other parameters in the Receipt which will contain the response values for the original
transaction allowing you to update your system and provide a receipt to the customer. When it is not found, these
additional response values will be null.

Below is an example of a Purchase transaction with Status Check. The same parameter values for the original
transaction should be sent in the Status Check request, i.e. if you send a purchase with Status Check, include the
same values as the original Purchase such as the store_id, api_token, order_id, amount, pan, expdate, crypt_type
and status_check. Please refer Appendix B. Definitions of Response Fields for variable definitions.

Please note, Status Check is supported on the following transaction types:

Basic Transactions VbV/SecureCode Mag Swipe Transactions ACH Transactions
us_purchase us_cavv_purchase us_track2_purchase us_ach_debit
us_refund us_cavv_preauth us_track2_refund us_ach_reversal
us_ind_refund us_track2_ind_refund us_ach_credit
us_preauth us_track2_preauth

us_completion us_track2_completion

us_purchasecorrection us_track2_purchasecorrection

us_forcepost us_track2_forcepost

The Status Check request should only be used once and immediately (within 2 minutes) after the last
transaction that had failed.

NOTE The Status Check request should not be used to check openTotals & batchClose requests.
Do not resend the Status Check request if it has timed out as additional investigation is required.

<?php
require "../mpgClasses.php";

[KKK K K K K K K K K K K Kk ko k ok ok ok ok Request Variables ****kkkkhkhkhkhk kA kX kkkkkkkkkhkhkkkxxx* % /

Sstore_id=$argvI[l];
Sapi_token=$argv[2];
Sstatus = 'true';

/************************ Transaction variables ******************************/

Sorderid=S$argv[3];
Samount=$argv[4];
Span=$argv[5];
Sexpiry_date=$argvi[6];

[FrHr KKK KKKk KKk KkKkKkKkKkkkkkx*** Transaction Array KRk ok kA AKX KKK Kk kkkkkhkhkk kA A XXX KKKk KKk /

Page 32 of 117

eSELECTplus PHP API November 6, 2012

StxnArray=array (type=>'us_purchase',
order_id=>S$orderid,
cust_id=>"cust"',
amount=>S$amount,
pan=>$pan,
expdate=>S$expiry_date,
crypt_type=>'7",
commcard_invoice=>'Invoice 5757FRJ8',
commcard_tax_amount=>'0.15"

)i

[FHr KKK KKK KKKk KkKkkKkKkkkkkk*** Transaction Object KRk kA AKX KKKk kkkkhkhkk kA A XXXk kK Kk /

SmpgTxn = new mpgTransaction($txnArray);

[KKK Kk K K kK K K K Kk ko k ok ok ok ok Request Object KRk kA AKX KKK Kk kkkkkhhkk kA XXX XX KKk KKk /

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK K K K K K K KK K Kk ko k ok ok ok ok mpgHttpsPost Object KAk kA AKX K KKk kkkkkhh kA A XXX KKK Kk /

SmpgHttpPost = new mpgHttpsPostStatus($store_id, $api_token, $status, SmpgRequest) ;

[KKK Kk K K K K KK K K Kk ko k ok ok ok ok ok Response Object Kok hkhkk kAKX K KKKk kkkkkhhkk kA A XXX KKKk KKk /

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . SmpgResponse->getTransAmount ());
print ("\nTxnNumber = " . SmpgResponse->getTxnNumber ()) ;

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . SmpgResponse->getReferenceNum());
print ("\nResponseCode = " . SmpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . SmpgResponse->getTransTime());

print ("\nTicket = " . SmpgResponse->getTicket());

print ("\nTimedOut = " . S$SmpgResponse->getTimedOut ());

print ("\nCardLevelResult = " . SmpgResponse->getCardLevelResult());
print ("\nStatusCode = " . $mpgResponse->getStatusCode());

print ("\nStatusMessage = " . $mpgResponse->getStatusMessage());
?>

As part of the Status Check response there will be two additional methods called getStatusCode() and
getStatusMessage(). Please refer to Appendix B. Definitions of Response Fields for more a full description of each
field.

Page 33 of 117

eSELECTplus PHP API November 6, 2012

9. Encrypted Transaction Examples

Included below is the sample code for the Encrypted transactions that can be found in the “Examples” folder of the
PHP APl download. Encrypted Basic transactions allow the merchant to key in the credit card using a Moneris
provided encrypted reader and submit the encrypted details. These transactions support the submission of the
‘enc_track2’ value only. Please note, these Encrypted Transactions are only applicable to card not present
transactions requiring a credit card number. For the corresponding follow-on transactions such as Capture, Void
and Refund please refer to the Basic Transaction Examples

The encrypted MSR device may be used for processing swiped card present transactions, manually keyed card
present transactions, as well as card not present transactions. This section refers only to the card not present
transaction set. For card present encrypted transactions, please refer to the Encrypted Mag Swipe Transaction
Examples

ﬂ Please note, the Encrypted Transactions may only be used with a Moneris provided encrypted mag swipe
NOTE reader. To enquire about the encrypted MSR, please call the Service Centre at 1-866-423-8475.

Encrypted Purchase

Similar to the Basic Purchase example (us_purchase), in the Encrypted Purchase (us_enc_purchase) example we
require several variables (store_id, api_token, order_id, amount, enc_track2, crypt_type, and device_type). There
are also a number of optional fields, such as cust_id, dynamic_descriptor, and two optional Level 2 variables
(commcard_invoice and commcard_tax_amount) available for Corporate Purchasing Cards. Please refer to
Appendix A. Definition of Request Fields for variable definitions.

<?php
require "../mpgClasses.php";

JRHEHRKK KKK K KKK KK KK IR AKX RequUest Variables %% &k kk &k xkdok & & xk ok & & xkkok & & xkkk %% /

$store_id="monusga002";
$api_token="gatoken";

JRhKkkkkkkkkkkkkkkkkkkkk*k Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid="enc_purchase_".date ("dmy-G:i:s");

Samount="1.00";

senc_track2:"02D901801F4E‘2800039B%*4924********403O/\TESTCARD/MONERISA***?*; 4924*****
FAKLOZO=H A KKK AX KK AKX KA A XK HA2XAT]50CT8335A5024949516FDAOAG68A91C4AFBABLI279DD1DE2283DBEBB2C6B3FDEACF7B5B314219D76C00
890F347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1IA18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083
239860B23837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B807
60742A3506C31415939320000A000283C5E03";

$device_type="idtech";

Scrypt="7";

// Dynamic Descriptor
//$dynamic_descriptor = "INV002"

JRHEARK KKK KA K KKK ARK KKK FKRAXX Transaction Array * %% %k kk &k xk sk & & xok ok & & %k kok &k & xkkk %% /

StxnArray=array (type=>'us_enc_purchase',
order_id=>Sorderid,
cust_id=>"'cust"',
amount=>S$amount,
enc_track2=>Senc_track2,
//dynamic_descriptor=>$dynamic_descriptor,
device_type=>$device_type,
crypt_type=>$crypt
)i

JRXKXKKKKKKKKKKKKKAKAXA %% Transaction Object **XXXXXXXXXXXKKKKKKKKKKKKKKKKK KK [

SmpgTxn = new mpgTransaction($txnArray);

JEXXKKXKKKKKKKKKKKKKKXXAXAX Request ODJeCt FAXXXXXXXXXXXXXXXXXKXXXXXXXXX XXX XK /

$mpgRequest = new mpgRequest ($mpgTxn) ;

JERKKKKKKKKKKKKKKKKXKXXAXA* MPGHELLPSPOSt Object XXX XX XXX XX XX XX KK KK KK KK KKKKKKAK [

Page 34 of 117

eSELECTplus PHP API

November 6, 2012

SmpgHttpPost

=new mpgHttpsPost ($store_id, Sapi_token, $SmpgRequest) ;

JXKKXKKKKKKKKKKKKKKKKXKXXAX ReSPONSE ObDJeCt *AXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

S$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType =
print ("\nTransAmount

print ("\nTimedOut =

" . SmpgResponse->getCardType());
= " . SmpgResponse->getTransAmount ());

" . S$mpgResponse->getTimedOut ()

print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());
print ("\nReceiptId = " . S$mpgResponse->getReceiptId());
print ("\nTransType = " . S$mpgResponse->getTransType());
print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " $SmpgResponse->getMessage ()) ;
print ("\nAuthCode = " . $mpgResponse->getAuthCode());
print ("\nComplete = " . $mpgResponse->getComplete());
print ("\nTransDate = " . S$mpgResponse->getTransDate());
print ("\nTransTime = " . S$mpgResponse->getTransTime());
)
(

print ("\nMaskedPan =

?>

;
" . S$mpgResponse->getMaskedPan());

Page 35 of 117

eSELECTplus PHP API November 6, 2012

Encrypted PreAuth

The Encrypted PreAuth is virtually identical to the Encrypted Purchase with the exception of the transaction type. It
is ‘us_enc_preauth’ instead of ‘us_enc_purchase’. Like the Purchase example, the PreAuth requires several
variables (store_id, api_token, order_id, amount, enc_track2, crypt_type, and device_type). There are also optional fields,
such as cust_id and dynamic_descriptor. Please refer to Appendix A. Definition of Request Fields for variable definitions.

A PreAuth transaction must be reversed if it is not to be captured. To reverse an authorization, please refer to the
Capture transaction in the Basic Transaction Examples. If you have any questions regarding uncaptured
authorization transactions, please refer to the Service Centre at 1-800-471-9511. Please use the
USEncCardVerification transaction type if the intent is to simply verify the card. For a process flow, please refer to
Process Flow for PreAuth / ReAuth / Capture Transactions.

<?php
require "../mpgClasses.php";

JRXXKKKKKKKKKKKKKKXKXKXAXA* Request Variables *¥ ¥ XX XXX XXX XXX KX KK KK KK KK KKKKKKKK KK [

Sstore_id="monusqga002";
Sapi_token="gatoken";

JREK KKK KKKk kkkkkkkkkkk*kk* Transaction Variables *r*xxkkkkkkkkkkkkkkkkhkkkkxkkkkxk /

Sorderid="enc_preauth_".date ("dmy-G:1i:s");

Samount="1.00";

$enc_track2="02D901801F4F2800039B%*4924***x***x** 4030 " TESTCARD/MONERISA*¥* %Kk k kokkkkkkkkkkkkkkokkkkkkkkkkkkkkkkkkxkk Dk ; 4QD 4K kK k%
FAKLOIQ=HAFF IR A X I KA A XK A XX K KA PXAT]IE50CT8335A5024949516FDASA68A91C4FBABLI279DD1DE2283DBEBB2C6B3FDEACF7B5B314219D76C00
890F347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1A18B707BCCT7TE48068EFF1882CFB4B369BDC4BB646C870D6083
239860B23837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B807
60742A3506C31415939320000A000283C5E03";

$device_type="idtech";

Scrypt="7";

//$dynamic_descriptor = "INV0O0O2"

JRHEAAKK KKK K KKK AKK KKK FKRAXX Transaction Array * %% %k dk &k xk sk & & xok ok & & %k kok &k & xkk k%% /

StxnArray=array (type=>'us_enc_preauth',
order_id=>S$orderid,
cust_id=>"'cust',
amount=>S$amount,
enc_track2=>$enc_track2,
//dynamic_descriptor=>$dynamic_descriptor,
device_type=>$device_type,
crypt_type=>$crypt
)i

JRKKXKKKKKKKKKKKKKAKAXXA %% Transaction Object **XXXXXXXXXXXXKKKK KK KK KK KKKKKKAK [

$SmpgTxn = new mpgTransaction($txnArray);

JRHEKK KKK KKK KKK KK XK I AKX X ReqUeSt ODFECT * %k H ok & %k kdok sk ok ok ok & %k ok & & %k Hok & % %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KK F KKK KKK KX KA AKX MPGHELPSPOSE ODFECT * % %k H ok k& koo o & koo ok & %k Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEARKK KKK KKK KK KKK KKK K KKK X RESPONSE ODF@CE * % H k4 % %k ok ok sk ok ok o & %Kok & X XK Kok & X X KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardTIype());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . SmpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());
print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

?>

Page 36 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Independent Refund

The Encrypted Independent Refund (us_enc_ind_refund) will credit a specified amount to the cardholder’s credit card.
The Encrypted Independent Refund does not require an existing order to be logged in the eSELECTplus gateway;
however, the credit card number and expiry date will need to be keyed in via the Moneris provided encrypted MSR device.
The Independent Refund transaction requires several variables (store_id, api_token, order_id, amount, enc_track2,
crypt_type and device_type). There are also optional fields, such as cust_id and dynamic_descriptor. The transaction
format is almost identical to an Encrypted Purchase or PreAuth.

The Encrypted Independent Refund transaction may or may not be supported on your account. If you receive a
ﬂ transaction not allowed error when attempting an encrypted independent refund, it may mean the transaction is
NOTE hot supported on your account. If you wish to have the Independent Refund transaction type temporarily enabled
(or re-enabled), please contact the Service Centre at 1-800-471-9511.

<?php
require "../mpgClasses.php";

JRXKXKKKKKKKKKKKKKKXKAKXAXA* Request Variables *A ¥ XX XX XXX XXX XXX KK KKKKKKKKKKKKKKAK [

Sstore_id="monusqga002";
Sapi_token="gatoken";

JREK KKK KKKk kkkkkkkkkkk*kk* Transaction Variables *rxxkkkkkkkkkkkkkkkkkkkkkkkkkk /

Sorderid="enc_ind_refund".date ("dmy-G:1i:s");
Samount="1.00";

Senc_track2="";

$device_type="idtech";

Scrypt="'7";

//dynamic descriptor
//$dyn_descriptor="MYSTORE 12345 INV 2";

JRHEKRK KKK KKK KKK KKK FKRAXX TransacCtion Array * %% %k kk &k xk sk & & xk ok & & %k kk &k & xkk k%% /

StxnArray=array (type=>'us_enc_ind_refund',
order_id=>Sorderid,
cust_id=>"'cust"',
amount=>S$amount,
enc_track2=>Senc_track2,
device_type=>$device_type,

// dynamic_descriptor=>$dyn_descriptor,
crypt_type=>$crypt

)i

JXXKXKKKKKKKKKKKKKAXKAXAX%% Transaction Object * XXX XXXXXXXXXKKXKKKKKKKKKKKKKKAK [

SmpgTxn = new mpgTransaction($txnArray);

JEXXKXKXKKKKKKKKKKKKXKKXXXAXX Request ODJect FAXXXXXXXXXXXXXXXXXKXXXXXXXXXXXA XK/

SmpgRequest = new mpgRequest ($SmpgTxn) ;

KKK KKK F KKK KK F AKX XK AKX X MPGHELPSPOST ODFECT * % % % H ok k& koo o & %k ok ok & %k Kok ok & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEAKK KKK KK KKK KKK KKK KA XX RESPONSE ODF@CE * %Kk 4 % %k ok ok sk ok ok o & %Kok ok X XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());
print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

?>

Page 37 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Force Post

The Encrypted Force Post (us_enc_forcepost) transaction is used when a merchant obtains the authorization
number directly from the issuer using a phone or any third party authorization method. The Force Post does not
require an existing order to be logged in the eSELECTplus gateway; however, the credit card number, expiry date
and the authorization number will need to be passed. This transaction allows the merchant to key the card number
and expiry date via the Moneris provided Encrypted MSR device. There are also optional fields, such as cust_id
and dynamic_descriptor.

<?php
require "../mpgClasses.php";

JREXXKKXKKKKKKKKKKKKXKAXAXX* Request Variables ¥ ¥ XX XX XXX XXX XXX KK KK KK KK KKKKKKKKAK [

Sstore_id="monusqga002";
$Sapi_token="gatoken";

J KKKk Kk kkkkkkkkkkkkkkkk*x Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid="enc_forcepost".date ("dmy-G:i:s");
$Samount="1.00";

Senc_track2="";

Sauth_code="654321";

$device_type="idtech";

Scrypt="'7";

//dynamic descriptor
//$dyn_descriptor="MYSTORE 12345 INV 2";

JERXKXKKXKKKKKKKKKKKKXKAXAXA* Transaction Array **¥ XXX XXX XXX XXX KX KK KK KK KK KK KKKKKK KK [

$txnArray=array (type=>'us_enc_forcepost',
order_id=>S$orderid,
cust_id=>"'cust',
amount=>S$amount,
enc_track2=>$enc_track2,
auth_code=>Sauth_code,
device_type=>$device_type,

// dynamic_descriptor=>$dyn_descriptor,
crypt_type=>$crypt

)i

JRHEARKK KKK K KKK ARAKXHFAAXX Transact 10N ODFECh %% %k H ok &k xkdok sk &k kdok & & %k Kok & % %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK AKX KKK KKK I AKX X RequUeSt ODFECT * % % H ok & %k kdok sk & ko o % %k ok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KK F AKX XK A XX MPGHELPSPOST ODFECT * % %k H ok k% koo o & ke ok ok & %k Kok ok & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JEXKXKKKKKKKKKKKKKKKKXKXXAX ReSPONSE ObDJeCt FAXXXXXXXX XX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

?>

Page 38 of 117

eSELECTplus PHP API November 6, 2012

10. Encrypted Transactions with Extra Features - Examples

In the previous section the instructions were provided for the card not present encrypted transaction set.
eSELECTplus also provides several extra features/functionalities for the encrypted transactions. These features
include storing customer and order details, verfying Card Verification Digits (CVD) and Address Verification (AVS)
and sending transactions to the Recurring Billing feature. Recurring Billing must be added to your account, please
call the Service Centre at 1-866-423-8475 to have your profile updated.

Encrypted Purchase (with Customer and Order details)

Below is an example of sending an Encrypted Purchase with the customer and order details. If one piece of
information is sent then all fields must be included in the request. Unwanted fields need to be blank. Please see
Appendix C. CustInfo Fields for description of each of the fields. The identical format is used for Encrypted PreAuth
with the exception of transaction type which changes from ‘us_enc_purchase’ to ‘us_enc_preauth’. Customer
details can only be sent with Purchase and PreAuth. It can be used in conjunction with other extra features such as
CVD/AVS and Recurring Billing. Please note that the cust _info fields are not used for any type of address
verification or fraud check.

<?php
require "mpgClasses.php";

JRHEHRKK KKK K KKK KK XK IR AKX RequUest Variables %% &k kk &k xkdok & & xk ok & & %k kok & & xkkk %% /

$store_id="monusga002";
$api_token="gatoken";

J KKKk Kk kkkkkkkkkkkkkkkk*x Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid="enc_purchase_".date ("dmy-G:i:s");

Samount="1.00";

senc_track2:"02D901801F4F2800039B%*4924********403O/\TESTCARD/MONERISA***?*; 4924*****
FAKLOZO=H A K KA AX KK AKX KA XX KA APXAT]I50CT8335A5024949516FDA9A68A91C4AFBABLI279DD1DE2283DBEBB2C6B3FDEACF7B5B314219D76C00
890F347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1IA18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083
239860B23837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B807
60742A3506C31415939320000A000283C5E03";

$device_type="idtech";

Scrypt="7";

// Dynamic Descriptor

Sdynamic_descriptor = "desc";

JEREXKXKKKKKKKKKKKKKKAKAKAXAX CUSLINFO ObDJECt *AXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgCustInfo = new mpgCustInfo();
/********************* Set E,mail and Instructions **************/

Semail ='Joe@widgets.com';
SmpgCustInfo->setEmail ($email) ;

Sinstructions ="Make it fast";
SmpgCustInfo->setInstructions ($instructions);

JRHEHRKK K KKK KKK KKKk Xx KKKk Create Billing Array and set it ***xxxxsskx/

$Sbilling = array(first_name => 'Joe',
last_name => 'Thompson',
company_name => 'Widget Company Inc.',
address => '111 Bolts Ave.',
city => 'Toronto',
province => 'Ontario',
postal_code => 'M8T 1T8',
country => 'Canada',
phone_number => '416-555-5555",
fax => '416-555-5555",
taxl => '123.45"',
tax2 => '12.34"',
tax3 => '15.45"',
shipping_cost => '456.23");

$SmpgCustInfo->setBilling($billing);

JRHEKKK KKK KKK KK KKK X x K k% Create Shipping Array and set it ***xxxkkxx/

Page 39 of 117

eSELECTplus PHP API

November 6, 2012

$shipping = array(first_name => 'Joe',
last_name => 'Thompson',
company_name => 'Widget Company Inc.',
address => '1l1l1l Bolts Ave.',
city => 'Toronto',
province => 'Ontario',
postal_code => 'M8T 1T8',
country => 'Canada',
phone_number => '416-555-5555",
fax => '416-555-5555",
taxl => '123.45"',
tax2 => '12.34",
tax3 => '15.45",
shipping_cost => '456.23");

SmpgCustInfo->setShipping ($shipping) ;

[RHEHRKK KKK KKK KK KKK Xx K k% Create Ttem Arraya and set them ****xxxkskx/

$iteml = array (name=>'item 1 name',
quantity=>'53",
product_code=>"'item 1 product code',
extended_amount=>'1.00");

S$mpgCustInfo->setItems ($iteml);
Sitem2 = array(name=>'item 2 name',
quantity=>'53",
product_code=>"'item 2 product code',

extended_amount=>'1.00");

SmpgCustInfo->setItems ($item2) ;

JRHEKKK KKK K KKK AKA KKK FARAXX Transaction Array * %% %k sk &k ak sk & & xkhok &k & xkkk &k &k xkk k%% /

StxnArray=array (type=>'us_enc_purchase',
order_id=>Sorderid,
cust_id=>"'cust"',
amount=>S$amount,
enc_track2=>Senc_track2,
// dynamic_descriptor=>$dynamic_descriptor,
device_type=>$device_type,
crypt_type=>$crypt
)i

JXXXKKKKKKKKKKKKKAKAXA %% Transaction Object * XXX XXXXXXXXXKKKKKKKKKKKKKKKKAK [

$SmpgTxn = new mpgTransaction($txnArray);

JRXXKKKKKKKKKKKKKKKXXXXXX St CUSLINFO ODJeCt XXX XXXXXXXXXXXXXXXXXXXXXXX XA K/

SmpgTxn->setCustInfo ($mpgCustInfo) ;

JEXXKKXKKKKKKKKKKKKXKKXXXAXX Request ODJect FAXXXXXXXXXXXXXXXXXKXKXXXKXXXXX XA K/

SmpgRequest = new mpgRequest ($SmpgTxn) ;

[KKK KK F KK KKK KX KA A XX MPGHELPSPOST ODFECT * % % % Kok k% ko o &k ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEKAK KKK KK KKK AKKK XK HF AKX X RESPONSE ODF@CE * %Kk 4 % ko ok &k ok o & kK ok ok X XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode()) ;
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());
print ("\nTransTime = " . S$mpgResponse->getTransTime());
print ("\nTimedOut = " . SmpgResponse->getTimedOut ());

print ("\nMaskedPan = " . SmpgResponse->getMaskedPan());

7>

Page 40 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Purchase (with Recurring Billing)

Recurring Billing is a feature that allows the transaction information to be sent once and then re-billed on a specified
interval for a certain number of times. This is a feature commonly used for memberships, subscriptions, or any
other charge that is re-billed on a regular basis. The transaction is split into two parts; the recur information and the
transaction information. Please see Appendix D. Recur and Recur Update Fields for description of each of the
fields. The optional customer and order details can be included in the transaction using the method outlined above
— Encrypted Purchase (with Customer and Order Details). Recurring Billing must be added to your account, please
call the Service Centre at 1-866-423-8475 to have your profile updated.

<?php
require "../mpgClasses.php";

JREXXKKXKKKKKKKKKKKKXKAXAXA* Request Variables A ¥ XX XXX XXX XXX KX KK KK KK KK KK KKKKKKAK [

Sstore_id="monusqga002";
$Sapi_token="gatoken";

JREK KKK KKKk kkkkkkkkkkk*kk* Transaction Variables *r*xkkkkkkkkkkkkkkkkkkkkkkkkxk /

Sorderid="enc_purchase_".date ("dmy-G:i:s");

Samount="1.00";

Senc_track2="02D901801F4F2800039B%*4924*****x** 4030 TESTCARD/MONERI S * * * % s * o * o s ok s ok ko ko ok ok Dok 2 4 QDA% ok % ok
FAKLOIQ=HAFF IR A X I KA A XK A A XK KA 2XAT]IE50CT8335A5024949516FDAOA68A91C4FBABLI279DD1DE2283DBEBB2C6B3FDEACF7B5B314219D76C00
890F347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1A18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083
239860B23837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B807
60742A3506C31415939320000A000283C5E03";

$device_type="idtech";

Scrypt="7";

// Dynamic Descriptor

//$dynamic_descriptor = "INV0O0O2"

J KKKk ok Kk kokkkkkkkkkkkkkkkkkk RecUr Variables *x k% k ks kkkkkkkkkkkkkkkkkkkkxk /

$recurUnit = 'day';
$SstartDate = '2013/11/30';
SnumRecurs = '4';
SrecurInterval = '10';
SrecurAmount = '31.00';
$SstartNow = 'true';

JERKKXKKKKKKKKKKKKKKKKKKKKKKXKKXKAKX RECUL Array XXX XXX XX XXKXKKKKKKKKKKKKAK [

SrecurArray = array(recur_unit=>S$recurUnit, // (day | week | month)
start_date=>$startDate, //yyyy/mm/dd
num_recurs=>$numRecurs,
start_now=>$startNow,
period => $recurlnterval,
recur_amount=> S$recurAmount
)i

KKK KKK KKK K KKK KK KKK KKK XK I KKK X RECUr ODJECE HH % %k H ok ok &k kdok ok & x Kok & & x KKk &/

SmpgRecur = new mpgRecur ($recurArray) ;
/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_enc_purchase',
order_id=>Sorderid,
cust_id=>"'cust"',
amount=>S$amount,
enc_track2=>$enc_track2,
//dynamic_descriptor=>$dynamic_descriptor,
device_type=>$device_type,
crypt_type=>$crypt
)i

JREXKXKKKKKKKKKKKKKKXKXAXA %% Transaction Object **XXXXXXXXXX XX KKKKKKKKKKKKKKKKAK [

$mpgTxn = new mpgTransaction($txnArray);

JERXKXKKKKKKKKKKKKKKKKKKKKKKXKXXXXX Gt RecUr Object XXX XX XXXXXXXXXXXXXX XX K /

SmpgTxn->setRecur ($mpgRecur) ;

JRHEKK KKK KKK KKK KK XK IR AKX RequUeSt ODFECT **xH ok & %k kdok sk koo o & %k ok ok & %k Hok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

Page 41 of 117

eSELECTplus PHP API November 6, 2012

/************************ mngttpSPOSt Object ******************************/
SmpgHttpPost =new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JEXKKXKKXKKKKKKKKKKKKXKKXKXXAX ReSPONSEe ObDJeCt FAXAXXXXXXXX KK KK KK KK KK KK KKKKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

print ("\nMaskedPan = " . SmpgResponse->getMaskedPan());

print ("\nRecurSuccess = " . $mpgResponse->getRecurSuccess());
?>

As part of the Recurring Billing response there will be an additional method called getRecurSuccess(). This can
return a value of ‘true’ or ‘false’ based on whether the recurring transaction was successfully registered in our

database.

Page 42 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Purchase (with CVD and AVS - eFraud)

Below is an example of a Encrypted Purchase transaction with CVD and AVS information. These values can be
sent in conjunction with other additional variables such as Recurring Billing or customer information. With this
feature enabled in your merchant profile, you will be able to pass in these fields for the following encrypted
transactions: ‘us_enc_purchase’, ‘us_enc_preauth’. To form cvd_info please refer to Appendix |. Card Validation
Digits (CVD), to form avs_info please refer to Appendix J. Address Verification Service (AVS). To have the eFraud
feature added to your profile, please call the Service Centre at 1-866-423-8475 to have your profile updated.

We strongly recommend that you include Address Verification (AVS) with all of your manually input transactions
(MOTO/eCommerce). Doing so will ensure transactions are qualifying at the best possible interchange rate and will
minimize costs to accept credit cards. If AVS is not present, the transaction may be assessed a higher interchange
fee.

When testing eFraud (AVS and CVD) you must only use the Visa test card numbers, 4242424242424242 or
4005554444444403, and the amounts described in the Simulator eFraud Response Codes document available at
https://developer.moneris.com

ﬂ The CVD Value supplied by the cardholder should simply be passed to the eSelectPlus payment gateway.
Under no circumstances should it be stored for subsequent uses or displayed as part of the receipt

NOTE information.

<?php
require "../mpgClasses.php";

JRHEARKK KKK K KKK KKK IR AKX RequUest Variables %% &k kk &k xkdok & & xkdok & & %k kok & & xkk k% % /

$store_id="monusga002";
$Sapi_token="gatoken";

[KKKk Kk kkkkkkkkkkkkkkkk*k Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkr /

Sorderid="enc_purchase_".date ("dmy-G:i:s");

Samount="1.00";

Senc_track2="02D901801F4F2800039B%*4924******x** 4030 "TESTCARD/MONERT S * % % * s ok ok ok k sk sk ok sk ok ok ok ok k ok 5 49D 4k % %k
FAKLOIQ=HAFF IR A X I KA XK A A XK KA 2XAT]IE50CT8335A5024949516FDAOA68A91C4FBABLI279DD1DE2283DBEBB2C6B3FDEACF7B5B314219D76C00
890F347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1A18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083
239860B23837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B807
60742A3506C31415939320000A000283C5E03";

$device_type="idtech";

Scrypt="7";

//$commcard_invoice = "INV123";
//$commcard_tax_amount = "1.00";
// Dynamic Descriptor
//$dynamic_descriptor = "INV002"

JRAK KKK KKKk kkkkhkkhkkkhkkkkxkk*x AVS Variables **xkkkkkkkkkhkkkkkhkkhkkkkk Xk /

Savs_street_number = '201';
Savs_street_name = 'Michigan Ave';
$avs_zipcode = '"MIMIM1';

J KKKk ok ok ok ok ok ok kkkkkkkkkkkkkkkk CVD Variables *kkkkokkkskokkokkokkokokokkokkokkokokkkokk /

Scvd_indicator = '1"';
Scvd_value = '198"';

JRHEAKK KKK K KKK AKX K KR K AVS Associative Array FERFFEEE KA KKK K KKK KKK X KKK/

SavsTemplate = array(
avs_street_number=>$avs_street_number,
avs_street_name =>$avs_street_name,
avs_zipcode => $avs_zipcode
)i

JXXXKKKKKKKKKKKXKXRXA X% CUD ASsociative Array XXX XXX XX x XX XX XXX XXXXXX XXX/

ScvdTemplate = array(
cvd_indicator => $cvd_indicator,
cvd_value => $cvd_value
)i

Page 43 of 117

eSELECTplus PHP API

November 6, 2012

JEKKXKKKKKKKKKKKKKKKKKXKXAAX AVS ODJECt FAXXXXXXXXXX XXX KX XX KX XX KX XXXXA XK/

$mpgAvsInfo = new mpgAvsInfo ($avsTemplate);

JERKKXKKKKKKKKKKKKKKKKKKXKXAAX CUD ObJECt FAXXXXXXXXXXXKXXKXXXKX XXX XX KA/

SmpgCvdInfo = new mpgCvdInfo ($cvdTemplate);

/************************ Transactlon Array **********************************/
StxnArray=array (type=>'us_enc_purchase',
order_id=>Sorderid,
cust_id=>"'cust"',
amount=>S$amount,
enc_track2=>Senc_track2,
//dynamic_descriptor=>$dynamic_descriptor,
//commcard_invoice=>$commcard_invoice,
//commcard_tax_amount=>$commcard_tax_amount,
device_type=>$device_type,
crypt_type=>$crypt
)i

JXXKXKKKKKKKKKKKKXKAKAXA %% Transaction Object * XXX XXXXXXXXX KX KK KK KK KK KKKKKKAK [

$mpgTxn = new mpgTransaction($txnArray);

JRHE KKK KKKk hkkkkkkkkkkkk*kk*x Sot AVS and CVD ***kkkkkkkkkkhkkkkkhkkhkkkkkkkkk*x /

SmpgTxn->setAvsInfo ($SmpgAvsInfo) ;
$mpgTxn->setCvdInfo ($mpgCvdInfo) ;

JRXKXKKXKKKKKKKKKKKKKXXXAAX RequUest ODJect FAXXXXXXXXXXXXXXXXXKXKXXX XXX XXAAAK /

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KK F KKK KK AKX KKK XX MPGHELPSPOST ODFECT * % %k H ok k% ok ok ok & ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEARKK KKK KKK KKK KKK KKK XX RESPONSE ODF@CE * %Kk 4 % %k ok ok & ok ok o & %K ok & K %Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . SmpgResponse->getTimedOut ());

print ("\nMaskedPan = " . SmpgResponse->getMaskedPan());

print ("\nAVSResponse = " . $mpgResponse->getAvsResultCode());
print ("\nCVDResponse = " . $mpgResponse->getCvdResultCode());
print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
?>

As part of the eFraud response there will be two additional methods called getAvsResultCode() and
getCvdResultCode(). For a list of possible CVD responses please refer to Appendix |. Card Validation Digits
(CVD) and for a list of AVS responses, please refer to Appendix J. Address Verification Service (AVS).

Page 44 of 117

eSELECTplus PHP API November 6, 2012

11. Mag Swipe Transaction Examples

Included below is the sample code for the Mag Swipe transactions that can be found in the “Examples” folder of the
PHP API download. Mag Swipe transactions allow the user to swipe their credit card and submit the Track2 details.
These transactions support the submission of ‘track2’, as well as a manual entry of the credit card number and
expiry date using the ‘pan’ and ‘expdate’ variables. If all three fields are submitted, the track2 details will be used
to process the transaction.

Mag Swipe Purchase

Similar to the basic Purchase, in the Mag Swipe Purchase (us_track2_purchase) example we require several
variables (store_id, api_token, order_id, amount, track2 and/or pan, expdate, and pos_code). There are also a
number of optional fields, such as cust_id, dynamic_descriptor, and two optional Level 2 variables
(commcard_invoice and commcard_tax_amount) available for Corporate Purchasing Cards. Please refer to
Appendix A. Definition of Request Fields for variable definitions.

<?php

require "../mpgClasses.php";

/‘k*********************** Request Varlables *‘k*‘k*‘k*‘k*‘k*‘k**********************/
Sstore_id=$argv[1l];

Sapi_token=$argv[2];

/‘k*********************** Transactlon Varlables *‘k*‘k*‘k*‘k**********************/
Sorderid=Sargv[3];

Scustid=Sargv[4];

Samount=$argv[5];

/************ Swipe card and read Trackl and/or Trackz ***********************/
$stdin = fopen("php://stdin", 'r');

Strackl = fgets ($stdin);

$startDelim = ";";
$firstChar = S$trackl{0};
Strack = '';

if ($firstChar==$startDelim)
{ Strack = $trackl;
}

else

{ Strack2 = fgets ($stdin);
Strack = S$track2;
}
Strack = trim(Strack);
/************************ Transactlon Array **********************************/
$txnArray=array (type=>'us_track2_purchase',
order_id=>S$orderid,
cust_id=>$custid,
amount=>S$amount,
track2=>$track,
pan=>"'",
expdate=>"'",
commcard_invoice=>"'Invoice 5757FRJ8',
commcard_tax_amount=>'0.15",
pos_code=>'12",
dynamic_descriptor=>'location no456"
/*********1;:************* Transaction Object *******************************/

SmpgTxn = new mpgTransaction($txnArray);
/************************ Request Object **********************************/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KK KK F KA KX F AKX X MPGHELPSPOST ODFECT * % %k H ok k& ok ook o & %k ok ok & %k Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEARKK KKK KKK KK KKK KKK KKK XX ReSPONSE ODF@CE * % H k4 % %k ok ok sk ok ok o & %Kok ok & XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode()) ;
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . S$mpgResponse->getCardLevelResult());

2>

Page 45 of 117

eSELECTplus PHP API November 6, 2012

Mag Swipe PreAuth

The Mag Swipe PreAuth is virtually identical to the Purchase with the exception of the transaction type. Itis
‘us_track2_preauth’ instead of ‘us_track2_purchase’. Like the Purchase example, PreAuth’s require several
variables (store_id, api_token, order_id, amount, track2 and/or pan, expdate, and pos_code). There are also
optional fields, such as cust_id and dynamic_descriptor. Please refer to Appendix A. Definition of Request Fields for

variable definitions.
<?php

require "../mpgClasses.php";

/************************ Request Varlables **********************************/
Sstore_id=$argv[1l];
Sapi_token=$argv[2];

/‘k*********************** Transactlon Varlables *‘k*‘k*‘k*‘k**********************/
Sorderid=$Sargv([3];

Samount=Sargv[4];

Span=$argv[5];

Sexpdate=S$argv([6];

/************ Swipe card and read Trackl and/or Track2 ***********************/
$stdin = fopen("php://stdin", 'r');
Strackl = fgets ($stdin);

$startDelim = ";";
SfirstChar = Strackl{0};

Strack = '';

if ($firstChar==SstartDelim)

{
Strack = S$trackl;

}

else

{
Strack2 = fgets ($stdin);
Strack = S$track2;

}

Strack = trim(Strack);

/************************ Transactlon Array **********************************/
StxnArray=array (type=>'us_track2_preauth',

order_id=>Sorderid,

cust_id=>"'cust"',

amount=>S$amount,

track2=>Strack,

pan=>$pan,

expdate=>$expdate,

pos_code=>'12",

dynamic_descriptor=>'location no456"

)i

/************************ Transaction Object *******************************/

SmpgTxn = new mpgTransaction($txnArray);

JEEXXKKKKKKKKKKKKKKKKXXXAXAX Request ODJect FAXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXA AR/

$mpgRequest = new mpgRequest ($mpgTxn) ;
/************************ mquttpSPOSt Object ******************************/

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JXKKXKKKKKKKKKKKKKKXKKXKKAXAX ReSPONSE ObDJeCt FAXAXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . S$mpgResponse->getCardLevelResult());
?>

Page 46 of 117

eSELECTplus PHP API November 6, 2012

Mag Swipe Capture

The Mag Swipe Capture (us_track2_completion) transaction is used to secure the funds locked by a
‘us_track2_preauth’ transaction. When sending a ‘us_track2_completion’ request you will need two pieces of
information from the original ‘us_track2_preauth’ — the order_id and the txn_number from the returned response; it
does not require the customer to re-swipe the credit card. There are also two optional Level 2 variables
(commcard_invoice and commcard_tax_amount) that may be submitted for Corporate Purchasing Cards.

<?php
require "../mpgClasses.php";

JRXXKKXKKKKKKKKKKKKXKKAXAXA* Request Variables A ¥ XXXk XXX XXX XXX KK KK KK KK KK KKKKKKAK [

Sstore_id=$argv[1l];
Sapi_token=S$Sargv([2];

JREK KKK KKk hkkkkkkkkkkkk*kk* Transaction Variables *rxxkkkkkkkkkkkkkkkkhkkhkkkkkkkk /

Sorderid=$argv([3];
$Stxnnumber=S$argv[4];

$Scompamount=S$argv[5];

/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_track2_completion',

order_id=>Sorderid,

comp_amount=>$compamount,

txn_number=>$txnnumber,

pos_code=>'12",

commcard_invoice=>'Invoice 5757FRJ8"',

commcard_tax_amount=>'0.15"

)i

JRXKXKKKKKKKKKKKKKAKAKXA %% Transaction Object **AXXXXXXXXXXXKXKKKK KK KK KK KKKK KK [

SmpgTxn = new mpgTransaction($txnArray);

JRXXKKXKKKKKKKKKKKKKXKXXXXAXAX Request ODJect FAXXXXXXXXXXXXXXXXXXXXXXXXX XXX XX K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

JRKKXKKKKKKKKKKKKKKXKAKAXXA*X MPGHELLPSPOSt ObJject XXX XX XXX XX XX XX KK KK KK KK KKKKKKAK [

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JEXKKXKKKKKKKKKKKKKKXKKXKKXXAX ReSPONSe ObDJeCt *AXXXXXXXXXX KK KK KK KK KK KKKKKKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . $SmpgResponse->getTicket());

print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

7>

Page 47 of 117

eSELECTplus PHP API November 6, 2012

Mag Swipe Void

The Mag Swipe Void (us_track2_purchasecorrection) transaction is used to cancel a transaction that was performed
in the current batch. No amount is required because a Void is always for 100% of the original transaction. The
only transactions that can be Voided are Captures and Purchases. To send a ‘us_track2_purchasecorrection’ the
order_id and txn_number from the ‘us_track2_completion’ or ‘us_track2_purchase’ are required; it does not require
the customer to re-swipe the credit card.

<?php

require "../mpgClasses.php";

/************************ Request Varlables **********************************/
Sstore_id=$argv[1l];

$api_token=Sargv([2];

/************************ Transactlon Varlables ******************************/
$orderid=S$argv[3];

Stxnnumber=$argv[4];

LR R R SR SR SR SR SR SRS E S E S S 1 AR RS R SRS E SRS ESESESESESESESESESESES]
/ Transaction Array /
$txnArray=array (type=>'us_track2_purchasecorrection',

order_id=>S$orderid,
txn_number=>$txnnumber
)i
/************************ Transaction Object *******************************/

SmpgTxn = new mpgTransaction($txnArray);

JRHEKK KKK KKK KKK KKK XK IR AKX RequUeSt ODFECT * % % H ok & % kkdok sk sk ko o & %k ok & & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KKK KX KA AKX MPGHELPSPOST ODFECT * % %k H ok k& koo o & koo ok & %k Kok ok & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEKA KKK KKK KKK KKK KKK KKK XX RESPONSE ODF@CE * % Kk 4 % %k ok ok sk ok ok o & %k ok ok & XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardTIype());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode()) ;
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . SmpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 48 of 117

eSELECTplus PHP API November 6, 2012

Mag Swipe Refund

The Mag Swipe Refund (us_track2_refund) will credit a specified amount to the cardholder’s credit card. A Refund
can be sent up to the full value of the original Capture or Purchase. To send a ‘us_track2_refund’ you will require
the order_id and txn_number from the original ‘us_track2_completion’ or ‘us_track2_purchase’; it does not require
the customer to re-swipe the credit card.

<?php

require "../mpgClasses.php";

JRHEKKK KKK KK KKK KK XK IR AKX RequUest Variables %% &k kk &k xk sk & & xk ok & & xkkok &k & xk k%% /

$store_id=$argv([1l];
$api_token=$argv([2];

J KKKk kkkkkkkkkkkkkkkkkk*x Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkr /

Sorderid=Sargv([3];
$amount=S$argv[4];
Stxnnumber=$argv[5];

JRXKXKKKKXKKKKKKKKKKXKAXAXX* Transaction Array XA XXX XXX X XXX XX KX KK KK KK KK KK KKKKKKAK [

$txnArray=array (type=>'us_track2_refund',
order_id=>S$orderid,
amount=>S$amount,
txn_number=>$txnnumber
)i

J KKK K KKK KKK RKK XK FAAXX Transact 10N ODFECh %% %k H ok &k xokdok k& xkdok k& %k Hok & % %k Kook /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKK KKK AKX KKK KKK I AKX X ReqUeST ODFECT ** xH ok & %k kdok s & kk ok o & %k ok & & %k H ok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KK KK F KA KX KA AKX MPGHELPSPOST ODFECT * % %k H ok k& koo o & koo ok & %k Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JEXXKXKKKKKKKKKKKKKKKKXKXXAX ReSPONSEe ObDJeCt *AXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardTIype());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());
print ("\nTransTime = " . SmpgResponse->getTransTime());
print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 49 of 117

eSELECTplus PHP API November 6, 2012

Mag Swipe Independent Refund

The Mag Swipe Independent Refund (us_track2_ind_refund) will credit a specified amount to the cardholder’s credit
card. The Mag Swipe Independent Refund does not require an existing order to be logged in the eSELECTplus
gateway; however, the credit card will need to be swiped to provide the track2. There are also optional fields that
may be submitted, such as cust_id and dynamic_descriptor. The transaction format is almost identical to a Mag
Swipe Purchase or a Mag Swipe PreAuth.

The Mag Swipe Independent Refund transaction may or may not be supported on your account. If you
m receive a transaction not allowed error when attempting a mag swipe independent refund, it may mean
NOTE the transaction is not supported on your account. If you wish to have the Independent Refund transaction
type temporarily enabled (or re-enabled), please contact the Service Centre at 1-800-471-9511.

<?php
require "../mpgClasses.php";

/************************ Request Varlables **********************************/
Sstore_id=$argv[1l];

Sapi_token=$argv[2];

Sorderid=$argv([3];

Scustid=Sargv[4];

Samount=$argv[5];

[*FEExkxFHFRKX*K**k Guipe Card and read Trackl and/or Track2 **xxxkkkxkkkskxkkksx /
$stdin = fopen("php://stdin", 'r');
Strackl = fgets ($stdin);

$startDelim = ";";
SfirstChar = Strackl{0};

Strack = '';

if ($firstChar==SstartDelim)

{ Strack = S$trackl; }

else

{ Strack2 = fgets ($stdin);
Strack = S$track2; }

Strack = trim($track);
/************************ Transactlon Array **********************************/
$txnArray=array (type=>'us_track2_ind_refund',
order_id=>S$orderid,
cust_id=>$custid,
amount=>S$amount,
track2=>Strack,
pan=>"'",
expdate=>"'",
pos_code=>'12",
dynamic_descriptor=>'location no456");

J R KK KKK K KKK KA KKK FAAXX Transact 10N ODFECh %% %k Hok & & x ok dok sk &k kdok & & x ok Hok & & %k Kok /

SmpgTxn = new mpgTransaction($txnArray);
/************************ Request Object **********************************/

SmpgRequest = new mpgRequest ($mpgTxn) ;

KKK KKK F KKK KK F KKK XK AKX X MPGHELPSPOST ODFECT * % %k H ok k% koo o & ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
?>

Page 50 of 117

eSELECTplus PHP API November 6, 2012

Mag Swipe Forcepost

The Mag Swipe Force Post (us_track2_forcepost) is used when a merchant obtains the authorization number
directly from the issuer using a phone or any third party authorization method. The Mag Swipe Force Post does not
require an existing order to be logged in the eSELECTplus gateway; however, the credit card will need to be swiped
to provide the track2 data. There are also optional fields that may be submitted, such as cust_id and
dynamic_descriptor. To complete the transaction, the authorization number obtained from the issuer must also be
entered.

<?php

require "../mpgClasses.php";

/************************ Request Varlables **********************************/
Sstore_id="'monusqga002"';

Sapi_token='gatoken';

/************************ Transactlon Varlables ******************************/
Sorderid='ord-"'.date ("dmy-G:i:s");

Scustid="'cust id';

Samount='1.00";

Sauthcode='123456";

Sdynamic_descriptor="location #456"';

/*************** Swlpe Card and read Trackl and/Or Trackz ********************/
$stdin = fopen("php://stdin", 'r');

Strackl = fgets ($stdin);

$startDelim = ";";
SfirstChar = Strackl{0};

Strack = '';

if ($firstChar==$startDelim)
{
Strack = S$trackl;
}
else
{
Strack2 = fgets ($stdin);
Strack = S$track2;
}
Strack = trim(Strack);
/************************ Transactlon Array **********************************/
$txnArray=array (type=>'us_track2_forcepost',
order_id=>S$orderid,
cust_id=>$custid,
amount=>$amount,
track2=>$track,
pan=>"'",
expdate=>"'",
pos_code=>'00",
auth_code=>S$authcode,
dynamic_descriptor=>$dynamic_descriptor
/**********l;************ Transaction Object *******************************/

SmpgTxn = new mpgTransaction($txnArray);
/************************ Request Object **********************************/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KK F KA KX KA A XX MPGHEEPSPOSE ODFECT * % %k H ok k% ok ook o & ke ok ok & %K Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEARKK KKK KK KKK AKA KKK KK AKX ReSPONSE ODF@CE * % Kk 4 % %k ok ok sk ok ok o & %Kok ok & XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
?>

Page 51 of 117

eSELECTplus PHP API November 6, 2012

12. Mag Swipe Transactions with Extra Features - Examples

In the previous section the instructions were provided for the Mag Swipe transaction set. eSELECTplus also
provides the ability to perform an Address Verification Service check with a Mag Swipe transaction.

Mag Swipe Purchase (with Address Verification Service — AVS)

Below is an example of a Mag Swipe Purchase transaction with AVS information. With this feature enabled in your
merchant profile, you will be able to pass in these fields for both ‘us_track2_purchase’ and ‘us_track2_preauth’
transactions. To form mpgAvsInfo please refer to Appendix J. Address Verification Service (AVS). To have the
eFraud feature added to your profile, please call the Service Centre at 1-866-423-8475 to have your profile
updated.

We strongly recommend that you include Address Verification (AVS) with all of your manually input transactions
(MOTO/eCommerce). Doing so will ensure transactions are qualifying at the best possible interchange rate and will
minimize costs to accept credit cards. If AVS is not present, the transaction may be assessed a higher interchange
fee.

When testing AVS (eFraud) you must only use the Visa test card numbers, 4242424242424242 or
4005554444444403, and the amounts described in the Simulator eFraud Response Codes document available at
https://developer.moneris.com

<?php
require "../mpgClasses.php";

/************************ Request Variables **********************************/
$Sstore_id=$argv([1l];
Sapi_token=$argv[2];

/************************ Transaction Variables ******************************/
Sorderid=$argv(3];

Scustid=$argv[4];

$amount=$argv[5];

/************************** AVS Variables *****************************/
avs_street_number = ;

$ t t b '201"

avs_street_name = ichigan Ave';

$ t t 'Mich Ave'

avs_zipcode = ;

$ d 'MIMIM1'

/********************** AVS Associative Array *************************/
SavsTemplate = array(

avs_street_number=>$avs_street_number,

avs_street_name =>$avs_street_name,

avs_zipcode => $avs_zipcode

)i
/************************** AVS Object ********************************/

SmpgAvsInfo = new mpgAvsInfo (S$SavsTemplate);

/************ Sw1pe card and read Trackl and/or Trackz ***********************/
$stdin = fopen("php://stdin", 'r');
Strackl = fgets (Sstdin);

$startDelim = ";";
SfirstChar = Strackl{0};

Strack = '';

if ($firstChar==S$startDelim)

{
Strack = S$trackl;

}

else

{
Strack2 = fgets ($stdin);
Strack = $track2;

}

Strack = trim(S$track);

Page 52 of 117

eSELECTplus PHP API November 6, 2012

/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_track2_purchase',
order_id=>S$orderid,
cust_id=>$custid,
amount=>S$amount,
track2=>S$track,
pan=>"'",
expdate=>"'",
commcard_invoice=>"'Invoice 5757FRJ8"',
commcard_tax_amount=>'0.15",
pos_code=>"'12",
dynamic_descriptor=>'location no456"
)i

J KKK KKK KKK KKK KKK FAAXX Transact 10N ODFECh %% %k Hok &k xk sk & & %k dok k& %k Hok & & %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

[kKR Kok Kk ok ok ok ok ok ok kkkkkkkokkkk Sat AVS Kk Kk k kok ok ok ok ok ok ok ko ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok K ok Kk k ok ok ok Kk /

SmpgTxn->setAvsInfo ($mpgAvsInfo) ;

JRHEKKK KKK KKK KK XK IR AKX ReqUeST ODFECT * %k H ok & %k k ok sk & ok ok o & %k Kok & & %k H ok & % %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

JERKKXKKKKKKKKKKKKKAKAXAXA* MPGHELLPSPOSt ObJject XA XXX XXX XX XX XX KX KKKKKKKKKKKKAK [

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JEXXKXKKXKKKKKKKKKKKKKKXKKXXAX ReSPONSE ObDJeCt FAXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . S$mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nAVSResponse = " . $mpgResponse->getAvsResultCode());
print ("\nCardLevelResult = " . S$mpgResponse->getCardLevelResult());
7>

As part of the AVS (eFraud) response there will be an additional method called getAvsResultCode(). For a list of
possible AVS responses, please refer to Appendix J. Address Verification Service (AVS)

m Please note, the above transaction with AVS information may not be tested within our current test
environment because the test Visa card numbers can not be swiped. To receive an AVS response you may

NOTE pass the test Visa card number as the ‘pan’.

Page 53 of 117

eSELECTplus PHP API November 6, 2012

13. Encrypted Mag Swipe Transaction Examples

Included below is the sample code for the Encrypted Mag Swipe transactions that can be found in the “Examples” folder of the
PHP API download. Encrypted Mag Swipe transactions allow the user to swipe their credit card using a Moneris provided
encrypted mag swipe reader and submit the encrypted Track2 details. These transactions support the submission of the
‘enc_track2’ value only. Please note, the Encrypted Mag Swipe Transactions are only applicable to transactions requiring a
credit card number. For card present manually entered and follow-on transactions such as Capture, Void and Refund please
refer to the Mag Swipe Transaction Examples.

The encrypted MSR device may be used for processing swiped card present transactions, manually keyed card present
transactions, as well as card not present transactions. This section refers only to the swiped and manually keyed card present
transaction set. For card not present encrypted transactions, please refer to the Encrypted Transaction Examples.

ﬂ Please note, the Encrypted Mag Swipe Transactions may only be used with a Moneris provided encrypted mag
NOTE Swipe reader. To enquire about the encrypted MSR, please call the Service Centre at 1-866-423-8475.

Encrypted Mag Swipe Purchase

Similar to the Mag Swipe Purchase (us_track2_purchase), in the Encrypted Mag Swipe Purchase
(us_enc_track2_purchase) example we require several variables (store_id, api_token, order_id, amount, enc_track2,
pos_code, and device_type). There are also a number of optional fields, such as cust_id, dynamic_descriptor, and two
optional Level 2 variables (commcard_invoice and commcard_tax_amount) available for Corporate Purchasing Cards.
Please refer to Appendix A. Definition of Request Fields for variable definitions.

<?php
require "../mpgClasses.php";

JRXXKKKKKKKKKKKKKKXKXAKXA XA % Request Variables ¥ ¥ XXXk XX XX XXX KX KK KKKKKKKKKKKKKK KK [

$store_id="monusga002";
$Sapi_token="gatoken";

Sorderid="purch_".date("dmy-G:i:s");

Samount="1.00";

$enc_track2="02D901801F4F2800039B%*4924***x***x** 4030 " TESTCARD/MONERISA** %Kk kokkkokkkkkkkkkkkokkkkkkkkkkkkkkkkkkxkk Dk ; 4QD 4K *xk**x
FAKLOIO=H A FF IR A X I I A A XK A A XX KA 2XAT]I50C78335A5024949516FDA9A68A91C4FBABL279DD1DE2283DBEBB2C6B3FDEACF 7B5B314219D76C00890F
347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1A18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083239860B2
3837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9C707DEC4CB0410B887291CAF2EE449573D01613484B80760742A3506C3
1415939320000A000283C5E03";

$pos_code="00";

$device_type="idtech";

JRKKXKKXKKKKKKKKKKKKXKXAXAXX% Transaction Array XA XXX XXX XXX XXX KK KK KK KK KK KK KKKKKKAK [

$txnArray=array (type=>'us_enc_track2_purchase',
order_id=>S$orderid,
cust_id=>"'cust',
amount=>$amount,
enc_track2=>$enc_track2,
pos_code=>$pos_code,
device_type=>$device_type);

$SmpgTxn = new mpgTransaction($txnArray);
$mpgRequest = new mpgRequest ($mpgTxn) ;

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEHRKK KKK KK KKK KKK KKK KA XX RESPONSE ODF@CE * % Kk 4 % ko ok sk ok ook o & %K ok ok X XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

?>

Page 54 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Mag Swipe PreAuth

The Encrypted Mag Swipe PreAuth is virtually identical to the Encrypted Purchase with the exception of the
transaction type. It is ‘us_enc_track2_preauth’ instead of ‘us_enc_track2_purchase’. Like the Purchase example,
the PreAuth requires several variables (store_id, api_token, order_id, amount, enc_track2, pos_code, and device_type).
There are also optional fields, such as cust_id and dynamic_descriptor. Please refer to Appendix A. Definition of Request
Fields for variable definitions.

<?php
require "../mpgClasses.php";

JRHEARKK KKK K KKK A KKK IR AKX RequUest Variables %% &k kk &k akdok & & xk ok & & %k kok &k & xkk k%% /

$store_id="monusga002";
$Sapi_token="gatoken";

JRhKkkkkkkkkkkkkkkkkkkkk*x Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid="preauth_".date("dmy-G:i:s");

$Samount="1.00";

$enc_track2="02D901801F4F2800039B%*4924***x***x** 4030 " TESTCARD/MONERISA*¥** Kk kkkkokkkkkkkkkkkkkkkkkkkkkkkkkkkkkxkk Dk ; 49D 4K xk**x
FAKLOZO=H A XK I AX KK A XK A A XK HFAPXAT]50CT78335A5024949516FDA9A68A91C4FBABL279DD1DE2283DBEBB2C6B3FDEACF 7B5B314219D76C00890F
347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1A18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083239860B2
3837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B80760742A3506C3
1415939320000A000283C5E03";

$pos_code="00";

Sdevice_type="idtech";

JRXKXKKXKKXKKKKKKKKKKXKAKXAXX* Transaction Array XA XXX XXX XXX XXX KX KK KK KK KK KK KKKKKKAK [

$txnArray=array (type=>'us_enc_track2_preauth',
order_id=>$orderid,
cust_id=>'cust',
amount=>S$amount,
enc_track2=>Senc_track2,
pos_code=>$pos_code,
device_type=>$device_type

)i

J KKK KKK KKK KKK KKK FAAXX Transact1on ODFECh %% %k Hok &k xkdok k& %k dok k& %k Kok & % %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK KK KKK KK XK IR AKX ReqUeSt ODFECT * % % H ok & %k kdok sk ko o & %k ok & & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

JRKKXKKKKKKKKKKKKKAKAKAXAX MPGHELLPSPOSt ObJject XXX XX XXX XX XX XX KK KK KK KK KKKKKK KK [

SmpgHttpPost =new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JXKKXKKKKKKKKKKKKKKKKXKXXAX ReSPONSe ObDJeCt *AXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . SmpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

7>

Page 55 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Mag Swipe Independent Refund

The Encrypted Mag Swipe Independent Refund (us_enc_track2_ind_refund) will credit a specified amount to the
cardholder’s credit card. The Encrypted Mag Swipe Independent Refund does not require an existing order to be
logged in the eSELECTplus gateway; however, the credit card will need to be swiped using the Moneris provided
encrypted mag swipe reader to provide the encrypted track2 details. There are also optional fields that may be
submitted, such as cust_id and dynamic_descriptor. The transaction format is almost identical to an Encrypted Mag
Swipe Purchase or an Encrypted Mag Swipe PreAuth.

The Encrypted Mag Swipe Independent Refund transaction may or may not be supported on your account.
ﬂ If you receive a transaction not allowed error when attempting a mag swipe independent refund, it may
mean the transaction is not supported on your account. If you wish to have the Independent Refund
NOTE transaction type temporarily enabled (or re-enabled), please contact the Service Centre at 1-800-471-
9511.

<?php
require "../mpgClasses.php";

JRHEARKK KKK K KKK K KKK AKX RequUest Variables %% &k kk &k xkdok & & xkdok & & %k kok &k & xkk k%% /

$store_id="monusga002";
$Sapi_token="gatoken";

Sorderid="indref_".date ("dmy-G:i:s");

Samount="1.00";

$enc_track2="02D901801F4F2800039B%*4924***x***x** 4030 " TESTCARD/MONERISA*** Kk kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkxkk Dk ; 4QD 4K xk**x
FAKLOIO=H A Fx IR A X I I A A X F A A XK KA 2XAT]I50CT8335A5024949516FDA9A68A91C4FBABL279DD1DE2283DBEBB2C6B3FDEACF 7B5B314219D76C00890F
347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1A18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083239860B2
3837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B80760742A3506C3
1415939320000A000283C5E03";

Spos_code="00";

Sdevice_type="idtech";

JRXKXKKXKKKKKKKKKKKKXKXXAXA% Transaction Array XXX XXX XXX XXX XX KKKKKKKKKKKKKKKKKKAK [

StxnArray=array (type=>'us_enc_track2_ind_refund',
order_id=>S$orderid,
cust_id=>"'cust',
amount=>S$amount,
enc_track2=>$enc_track2,
pos_code=>$pos_code,
device_type=>$device_type);

J KKK KK KKK KKK ARAK XK FRAXX Transact 10N ODFECh %% %k H ok &k xkdok k& xkdok k& %k Hok & & %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKRKK KKK KKK KKK KKK KA AKX ReqUeSt ODFECT * %k H k& %k kdok s &k k ok o & %k Kok & & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;
/************************ mquttpSPOSt Object ******************************/
SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JEXEXKXKKKKKKKKKKKKKKXKKXKXXAX ReSpPONSe ObDJect *AXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . $mpgResponse->getCardLevelResult());
print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

?>

Page 56 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Mag Swipe Forcepost

The Encrypted Mag Swipe Force Post (us_enc_track2_forcepost) is used when a merchant obtains the
authorization number directly from the issuer using a phone or any third party authorization method. The Encrypted
Mag Swipe Force Post does not require an existing order to be logged in the eSELECTplus gateway; however, the
credit card will need to be swiped or keyed in using a Moneris provided encrypted mag swipe reader and submit the
encrypted Track2 details. There are also optional fields that may be submitted, such as cust_id and
dynamic_descriptor. To complete the transaction, the authorization number obtained from the issuer must also be
entered.

<?php
require "../mpgClasses.php";

JREXKXKKXKKKKKKKKKKKKXKAXAX A% Request Variables *A ¥ XX XXX XX XXX XXX KK KKKKKKKKKKKKKKAK [

$store_id="monusga002";
$Sapi_token="gatoken";

JRhKkkkkkkkkkkkkkkkkkkkk*x Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkr /

Sorderid="enc_track2_forcepost".date ("dmy-G:i:s");
$Samount="1.00";

Senc_track2="";

$pos_code="00";

Sauth_code="654321";

$device_type="idtech";

//dynamic descriptor
//$dyn_descriptor="MYSTORE 12345 INV 2";

JRXKXKKKKXKKKKKKKKKKXKXKXAXX* Transaction Array XXX XXX XXX XXX XX KX KK KK KK KK KK KKKKKKAK [

$txnArray=array (type=>'us_enc_track2_forcepost',
order_id=>S$orderid,
cust_id=>"'cust"',
amount=>S$amount,
enc_track2=>$enc_track2,
auth_code=>Sauth_code,
pos_code=>$pos_code,
device_type=>$device_type,

// dynamic_descriptor=>$dyn_descriptor

)i

/************************ Transaction Object *******************************/
SmpgTxn = new mpgTransaction($txnArray);
/************************ Request Object **********************************/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KKK AKX KA AKX MPGHELPSPOST ODFECT * % %k H ok k% koo o & koo ok & %k Kok ok & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JXKKXKKKKKKKKKKKKKKXKKXKXXAX ReSPONSe ObDJeCt FAXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardTIype());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

?>

Page 57 of 117

eSELECTplus PHP API November 6, 2012

14. Encrypted Mag Swipe Transactions with Extra Features — Examples

In the previous section the instructions were provided for the Encrypted Mag Swipe transaction set. eSELECTplus
also provides the ability to perform an Address Verification Service check with an Encrypted Mag Swipe transaction.

Encrypted Mag Swipe Purchase (with Address Verification Service — AVS)

Below is an example of an Encrypted Mag Swipe Purchase transaction with AVS information. With this feature
enabled in your merchant profile, you will be able to pass in these fields for both ‘us_enc_track2_purchase’ and
‘us_enc_track2_preauth’ transactions. To form avs_info please refer to Appendix J. Address Verification Service
(AVS). To have the eFraud feature added to your profile, please call the Service Centre at 1-866-423-8475 to have
your profile updated.

When testing AVS (eFraud) you must only use the Visa test card numbers, 4242424242424242 or
4005554444444403, and the amounts described in the Simulator eFraud Response Codes document available at
https://developer.moneris.com

<?php
require "../mpgClasses.php";

JREXXKKKKKKKKKKKKKKXKKXXAXA*X Request Variables *¥ ¥ XXXk XXX XXX XXX KK KK KK KK KKKKKKKK KK [

$store_id="monusga002";
$api_token="qgatoken";

JREK KKK KKKk kkkkkkkkkkk*kk* Transaction Variables *rxxkkkkkkkkkkkkkkkkkkkkkkkkkk /

Sorderid="purch_".date ("dmy-G:i:s8");

Samount="1.00";

senc_track2:"02D901801F4E‘2800039B%*4924********403O/\TESTCARD/MONERISA***?*; 4924*****
FAKLOZO=H A XK I A A F A XK A A XK HAPXAT]50CT78335A5024949516FDA9A68A91C4FBABL279DD1DE2283DBEBB2C6B3FDEACF 7B5B314219D76C00890F
347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1A18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083239860B2
3837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9C707DEC4CB0410B887291CAF2EE449573D01613484B80760742A3506C3
1415939320000A000283C5E03";

Spos_code="00";

$device_type="idtech";

J KKKk ok kkkokkkkkkkkkkkkkkkkkk AYVSG Variabhles *hkkkokkokskokkokkokokokok ok kokkokkok oKk kokk /

$avs_street_number = '201';
Savs_street_name = 'Michigan Ave';
$avs_zipcode = '"MIMIM1';

[KKK KKK AKX KKK KK XK RK AVS Associative Array KFEREFEEA KA K KKK KKK KKK XK KKK/

SavsTemplate = array(
avs_street_number=>$avs_street_number,
avs_street_name =>$avs_street_name,
avs_zipcode => $avs_zipcode

)i

JERXKXKKKKKKKKKKKKKKKKKXKXAAX AVS ODFJECt FAXXXXXXXXXXXXX XX KX XXX KKK XX KA K/

$mpgAvsInfo = new mpgAvsInfo ($avsTemplate);

JERXKXKKKKKKKKKKKKKKXKXXXAXA* Transaction Array XXX XXX XX XXX XXX KX KK KK KK KK KK KKKKKK KK [

StxnArray=array (type=>'us_enc_track2_purchase',
order_id=>Sorderid,
cust_id=>"'cust"',
amount=>S$amount,
enc_track2=>Senc_track2,
pos_code=>$pos_code,
device_type=>$device_type

)i

J KKK KKK KKK KKK KKK FAAXX Transact1on ODFECh %% %k H ok &k x ok sk k& xkdok & & %k Hok & & %k Kook /

SmpgTxn = new mpgTransaction($txnArray);

JRE KKK KKKk kkkkkhkkhkkkhkkhkk* Got AVS H*rkkkkkkkhkkkkkhkkhkkhkhkkhkkkkhkkkkkhkkkkkkkkkkk* /

$SmpgTxn->setAvsInfo ($mpgAvsInfo);

Page 58 of 117

eSELECTplus PHP API November 6, 2012

JEEXXKKKKKKKKKKKKKKXKXXXXXXX RequUest ODJect FAXXXXXXXXXXXXXXXXXXXXX KX XX XX XX XA K/

$mpgRequest = new mpgRequest ($mpgTxn) ;
/************************ mquttpsPost Obje(:t *‘k*****‘k**********************/
$SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JXKKXKKXKKKKKKKKKKKKXKKXKKXKAX ReSPONSE ObDJeCt FAXXXXXXXXXX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nCardLevelResult = " . SmpgResponse->getCardLevelResult());
print ("\nMaskedPan = " . S$mpgResponse->getMaskedPan());

print ("\nAVSResponse = " . $mpgResponse->getAvsResultCode());
7>

As part of the AVS (eFraud) response there will be an additional method called GetAvsResultCode(). For a list of
possible AVS responses, please refer to Appendix J. Address Verification Service (AVS)

ﬂ Please note, the above transaction with AVS information may not be tested within our current test
environment because the test Visa card numbers can not be swiped. To receive an AVS response you may
NOTE pass the test Visa card number as the ‘pan’.

Page 59 of 117

eSELECTplus PHP API November 6, 2012

15. Pinless Debit Transaction Examples

Included below is the sample code for the Pinless Debit transactions that can be found in the “Examples” folder of
the PHP API download. Pinless Debit transactions allow the user to submit billing invoice account information and
have funds debited from their bank account for bill payment. This transaction type lets the merchant know if the
funds are available or not.

Pinless Debit Purchase

In the Pinless Debit Purchase (us_pinless_debit_purchase) example we require several mandatory variables:
store_id, api_token, order_id, amount, pan, presentation_type, intended_use and p_account_number. There are
also many optional variables, such as the expdate, cust_id. Please refer to Appendix A. Definition of Request Fields
and Appendix E. Pinless Debit Fields for variable definitions.

<?php

require "../mpgClasses.php";

JRHEHRKK KKK KKK KKK KKK IR AKX RequUest Variables %% &k kk &k ak sk & & xk ok & & %k kok &k & xkk k%% /

$store_id=$argv[1l];
$api_token=$argv([2];

/************************ Transaction Variables ******************************/
Sorderid=$argv([3];

Samount=$Sargv[4];

$pan=$argv[5];

Sexpdate=S$argv([6];

Spresentation_type = S$argv[7];

$intended_use = $argv[8];

$Sp_account_number = Sargv([9];

JRXKXKKKKKKKKKKKKKKXKXXAXA* Transaction Array XA XXX XXX XX XX XX KX KK KK KK KK KK KKKKKKAK [

$txnArray=array (type=>'us_pinless_debit_purchase',
order_id=>S$orderid,
cust_id=>"'cust', //This field is optional
amount=>S$amount,
pan=>$pan,
expdate=>$expdate, //This field is optional
presentation_type=>$presentation_type,
intended_use=>$intended_use,
p_account_number=>$p_account_number
)i

J KKK KKK KKK KKK KKK FRAXX Transact1on ODFECh %% %k ko &k x ok sk k& %k dok & & x Kk Fok & & %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK AKX KKK KKK I AKX X ReqUest ODFJECT * %k H ok & %k kdok sk sk ok ook ok & %k Hok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

KKK KKK F KKK KK F AKX XK AKX X MPGHEEPSPOST ODFECT * % % % H ok k& ko ok &k ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEAKKK KKK KKK KKK KKK KKK KA XX RESPONSE ODF@CE * % Kk 4 % %k ok ok &k ok o & %Kok ok K XK Kok & X X KKk [

$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . $mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());
print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

2>

Page 60 of 117

eSELECTplus PHP API November 6, 2012

Pinless Debit Refund

The Pinless Debit Refund (us_pinless_debit_refund) transaction is used to refund a prior Pinless Debit Purchase
transaction that was performed within the past 3 months. No amount is required because a Pinless Debit Refund is
always for 100% of the original transaction. To send a ‘us_pinless_debit_refund’ the order_id and txn_number
from the ‘us_pinless_debit_purchase’ are required; it does not require the Pinless Debit information to be re-
entered.

<?php
require "../mpgClasses.php";

JRXXKKKKKKKKKKKKKKXKXXXAXX %X Request Variables ¥ ¥ XXXk XXX XXX XXX KK KK KK KK KK KKKKKK KK [

Sstore_id=$argv[1l];
Sapi_token=S$Sargv([2];

/************************ Transactlon Varlables ******************************/
Sorderid=$argv(3];

Samount=$argv([4];

Stxnnumber=$argv[5];

/************************ Transactlon Array **********************************/
$txnArray=array (type=>'us_pinless_debit_refund',

order_id=>S$orderid,

amount=>S$amount,

txn_number=>S$txnnumber

)i

J KKK K KKK K KKK ARKK XK FAAXX Transact 10N ODFECh %% %k H ok & & xkdok k& %k dok & & %k H ok & & %k Kk /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK KK KKK KKK I AKX X RequUest ODFECT * %k H ok & % kkdok sk &k k ok ok & %k ok & & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KK F AKX XK A XX MPGHELPSPOST ODFECT * % %k H ok k& koo o & koo ok & %k Kok & & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRKKXKKXKKKKKKKKKKKKKKXKKXXAX ReSPONSe ObDJeCt *AXXXXXXXX XX KKKKKKKKKKKKKKKKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 61 of 117

eSELECTplus PHP API November 6, 2012

16. Pinless Debit Transaction with Extra Features - Examples
Pinless Debit Purchase (with Customer and Order details)

In the Pinless Debit Purchase (us_pinless_debit_purchase) example we require several mandatory variables:
store_id, api_token, order_id, amount, pan, presentation_type, intended_use and p_account_number. There is
also an optional variable, such as the expdate, cust_id. Please refer to Appendix A. Definition of Request Fields,
Appendix C. CustInfo Fields and Appendix E. Pinless Debit Fields for variable definitions.

<?php

require "../mpgClasses.php";

JRHEARKK KKK KKK KKK KKK IR AKX RequUest Variables %% &k kk &k akdok & & xk ok & & xkkk & & xkk k%% /

$store_id=$argv([1l];
$api_token=$argv([2];

Sorderid=$argv([3];
Samount=$Sargv[4];
$pan=$argv[5];
Sexpdate=S$argv([6];
Spresentation_type = Sargv[7];
$intended_use = $argv[8];
Sp_account_number = $argv[9];

JRXKXKKXKKKKKKKKKKKKXKAKXAXA* Transaction Array XA XXX XX XXX XX KX KX KK KK KK KK KK KKKKKKAK [

StxnArray=array (type=>'us_pinless_debit_purchase',
order_id=>S$orderid,
cust_id=>"'cust', //This field is optional
amount=>$amount,
pan=>$pan,
expdate=>$expdate, //This field is optional
presentation_type=>$presentation_type,
intended_use=>$intended_use,
p_account_number=>$p_account_number
)i

J KKK KK F KKK KKK KX FFAAXX CUSETINEO ODF@CE * % H ok A % %k ok o & koo o & kK ok & K XK Kok & X %k Kok /

SmpgCustInfo = new mpgCustInfo();
/********************* Set E,mail and Instructions **************/

Semail ='Joe@widgets.com';
SmpgCustInfo->setEmail ($email) ;

$instructions ="Make it fast";
SmpgCustInfo->setInstructions ($instructions);

JXXXKXKKKKKKKXKXXXXXxx %% Create Billing Array and set it **xxxxxxxx/

Sbilling = array(first_name => 'Joe',
last_name => 'Thompson',
company_name => 'Widget Company Inc.',
address => '111 Bolts Ave.',
city => 'Toronto',
province => 'Ontario',
postal_code => 'M8T 1T8',
country => 'Canada',
phone_number => '416-555-5555",
fax => '416-555-5555",
taxl => '123.45"',
tax2 => '12.34"',
tax3 => '15.45",
shipping_cost => '456.23");

$SmpgCustInfo->setBilling($billing);
/********************* Create Shipping Array and Set it **********/

$shipping = array(first_name => 'Joe’',
last_name => 'Thompson',
company_name => 'Widget Company Inc.',
address => '111 Bolts Ave.',
city => 'Toronto',
province => 'Ontario',
postal_code => 'M8T 1T8',

Page 62 of 117

eSELECTplus PHP API

November 6, 2012

country => 'Canada',

phone_number => '416-555-5555",

fax => '416-555-5555",

taxl => '123.45"',

tax2 => '12.34"',

tax3 => '15.45",

shipping_cost => '456.23");
SmpgCustInfo->setShipping ($shipping) ;

[RHEHKKK KKK KKK K KKKk X x K k% Create Ttem Arraya and set them ****xxxkkx/

$iteml = array (name=>'item 1 name',
quantity=>'53",
product_code=>'item 1 product code',
extended_amount=>'1.00");
SmpgCustInfo->setItems ($iteml) ;
$item2 = array(name=>'item 2 name',
quantity=>'53",
product_code=>"item 2 product code',
extended_amount=>'1.00");
SmpgCustInfo->setItems (Sitem2);
/************************ TranSaCthn Object *******************************/
SmpgTxn = new mpgTransaction($txnArray);
/************************ SQt Custlnfo Object *****************************/

SmpgTxn->setCustInfo ($mpgCustInfo) ;

JRHEKK KKK KKK KKK KKK I AKX X RequUeST ODFECT * %k H ok & %k kdok s & ko o & kK ok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;
/************************ mngttpSPOSt Object ******************************/
SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEAKKK KKK KK KK KKK KKK HF KA XX RESPONSE ODF@CE * %Kk 4 % %k ok ok &k ok o & kK ok ok K XK Kok ok & X KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . S$mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());
print ("\nTransTime = " . S$mpgResponse->getTransTime());
print ("\nTicket = " . $SmpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 63 of 117

eSELECTplus PHP API November 6, 2012

Pinless Debit Purchase (with Recurring Billing)

The Pinless Debit Purchase with Recurring Billing (us_pinless_debit_purchase) transaction allows the merchant to
submit the transaction information once and then re-bill on a specified interval for a certain number of times. This
is a feature commonly used for memberships, subscriptions, or any other charge that is re-billed on a regular basis.
Please see Appendix A. Definition of Request Fields, Appendix D. Recur and Recur Update Fields and Appendix E.
Pinless Debit Fields for description of each of the fields.

<?php

require "../mpgClasses.php";

JRHEARKK KKK K KKK KK XK IR AKX RequUest Variables %% &k kk &k xkdok & & xk ok & & xkkk &k & xkk k%% /

$store_id=$argv([1l];

$api_token=$argv([2];

/************************ Transaction Variables ******************************/
Sorderid=$argv([3];

Samount=$Sargv[4];

$pan=$argv[5];

Sexpdate=S$argv([6];

Spresentation_type = $Sargv[7];

$intended_use = $argv[8];

S$Sp_account_number = Sargv([9];

/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_pinless_debit_purchase',
order_id=>S$orderid,
cust_id=>"'cust', //This field is optional
amount=>S$amount,
pan=>$pan,
expdate=>$expdate, //This field is optional
presentation_type=>$presentation_type,
intended_use=>$intended_use,
p_account_number=>$p_account_number
)i

J KKKk ok Kk kokkkkkkkkkkkkkkkkkk RecUr Variables *x k% kkkkkkkkkkkkkkkkkkkkkkkxk /

$recurUnit = 'day';
S$SstartDate = '2008/11/30';
$numRecurs = '4';
$recurInterval = '10';
$recurAmount = '31.00';
$startNow = 'true';

khkkkkkhkhkhkkhkhkhkhkhkhkhkhkhkkkkkhkhkhkhkkxkk LR RS R SRS E SRS RS EEEEESESESES]
/ Recur Array /
SrecurArray = array(recur_unit=>$recurUnit, // (day | week | month)
start_date=>$startDate, //yyyy/mm/dd
num_recurs=>$numRecurs,
start_now=>$startNow,
period => S$recurlnterval,
recur_amount=> $recurAmount
)i
AR SRS S SR SR SR SR SR SR SR SRS RS S S 1 AR SR S R SR SR SR SRS SR SRS E
/ Recur Object /
SmpgRecur = new mpgRecur ($SrecurArray) ;
/************************ Transactlon Object *******************************/
SmpgTxn = new mpgTransaction($txnArray);
AR SRS S SR SR SR SR SR SR SR SRS S EEE 1 LR R R SR S S S R SRS S SRS S S S
/ Set Recur Object /
$SmpgTxn->setRecur ($mpgRecur) ;
/************************ Request Object **********************************/
SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KK F KKK KK F KA KX KA AKX MPGHELPSPOST ODFECT * % %k H ok k% koo o & ke ok ok & %k Kok ok & %k Kok /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEHRKK KKK KK KKK KKK KKK KA XX ReSPONSE ODF@CE * % Kk 4 % %k ok ok sk ok ok o & %K Kok ok & XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . $SmpgResponse->getTicket());

print ("\nTimedOut = " . SmpgResponse->getTimedOut ());

print ("\nRecurSuccess = " . S$SmpgResponse->getRecurSuccess());
7>

Page 64 of 117

eSELECTplus PHP API November 6, 2012

17. ACH Transaction Examples

Included below is the sample code for the ACH transactions that can be found in the “Examples” folder of the
PHP API download. ACH transactions allow the user to submit bank account information to have funds either
debited or credited.

ACH Debit

In the ACH Debit (us_ach_debit) example we require several mandatory variables: store_id, api_token, order_id,
amount, sec, routing_num, account_num, and account_type. There are also many optional variables, such as the
cust_id, check_num and the customer details. Please refer to Appendix A. Definition of Request Fields for all

request variables and Appendix F. AchInfo Fields for all ACH variables. Please note that the mpgAchInfo fields
are not used for any type of address verification or fraud check.

ACH Debit (Check not present)

SEC codes for physical check not present include: ‘web’, ‘ccd’, ‘ppd’. In the example below the following variables
are required for an ACH Debit (check not present) transaction: routing_num, account_num, check_num,
account_type and micr. Please refer to Appendix G. ACH Sec Codes and Process Flow for a full description on the
mandatory fields.

<?php

require "../mpgClasses.php";

/‘k*********************** Request Varlables *‘k*‘k*‘k*‘k*‘k*‘k**********************/
Sstore_id="'monusqga002"';

Sapi_token='gatoken';

Sorderid='ach-'.date ("dmy-G:i:s");
Samount="'1.00";
$custid = 'my cust id';

/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_ach_debit"',

order_id=>S$orderid,

cust_id=>$custid,

amount=>$amount

)i

JRKR Kk kkkkkkkkkkkkkkkkkkkkk ACH Tnfo Variables **x % kkkkkk ks kkkkkkkkkkkkkkkkk /

$sec = 'ppd';
Scust_first_name = 'Bob';
Scust_last_name = 'Smith';
Scust_addressl = '101 Main St';
Scust_address2 = 'Apt 102';
$cust_city = 'Chicago';
Scust_state = 'IL';
Scust_zip = '123456"';
Srouting_num = '54321"';
Saccount_num = '23456"';
Scheck_num = '100';
$account_type = 'savings';

/********************** ACH Info Associative Array *************************/
SachTemplate = array(sec =>$sec,
cust_first_name => S$cust_first_name,
cust_last_name => $cust_last_name,
cust_addressl => $cust_addressl,
cust_address2 => $cust_address2,
cust_city => $cust_city,
cust_state => S$cust_state,
cust_zip => $cust_zip,
routing_num => $routing_num,
account_num => $account_num,
check_num => $check_num,
account_type => $Saccount_type
)i

JERKKXKKKKKKKKKKKKKKKAKAXA %% ACH INFfo ObJject *AXXXXXXXXKXXKXKXKKKKKKKKKKKKKKKKAK [

$mpgAchInfo = new mpgAchInfo ($achTemplate);

JXXKXKKKKKKKKKKKKKAKAXA*X %% Transaction Object **X XXX XXXXXXXX KX KK KK KK KK KKKKKK KK [

SmpgTxn = new mpgTransaction($txnArray);

JRE KK KKKk kkkkkkkkkkkkkkk*x Sot ACH Tnfo F rkkkkkkhkkhhkhkhhkhhkkkkhkkkkkkkkkkkkkkk /

$mpgTxn->setAchInfo ($mpgAchInfo) ;

Page 65 of 117

eSELECTplus PHP API

November 6, 2012

JEEXXKKKKKKKKKKKKKKXKXXXXXXX RequUest ODJect FAXXXXXXXXXXXXXXXXXXXXX KX XX XX XX XA K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

JERKKKKKKKKKKKKKKKAKKXKAXA* MPGHELLPSPOSt ObJject XXX XX XXX KX KX KX KK KK KK KK KKKKKK KK [

SmpgHttpPost = new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JEXKKXKKKKKKKKKKKKKKKKXKKXKAX ReSPONSe ObDJeCt *AXAXXXXXXXX KX KK KK KK KK KK KK KKKKKKAK [

S$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . $SmpgResponse->getTicket());

print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

?>

Page 66 of 117

eSELECTplus PHP API

November 6, 2012

ACH Debit (Check present)

SEC codes for physical check present include: ‘arc’, ‘boc’, ‘pop’. In the example below the following variables are
required for an ACH Debit (check present) transaction: micr, dl_num, magstripe, image_front and image_back.
Please refer to Appendix G. ACH Sec Codes and Process Flow for a full description on the mandatory fields.

<?php
require "../mpgClasses.php";
/************************ Request variables **********************************/
$store_id="monusga002"';
$Sapi_token='gatoken';
/************************ Transaction variables ******************************/
Sorderid="'ach-"'.date ("dmy-G:i:s");
$Samount='1.00";
$custid = 'my cust id';
/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_ach_debit"',
order_id=>$orderid,
cust_id=>$custid,
amount=>$amount
/*************************)*’ ACH Info Varlables *****************************/
$sec = 'pop';
Scust_first_name = 'Bob';
Scust_last_name = 'Smith’';
Scust_addressl = '101 Main St';
Scust_address2 = 'Apt 102';
Scust_city = 'Chicago';
Scust_state = '"IL';
$cust_zip = '123456"';

Smicr = 't071000013t7429413470125";

$dl_num = 'C0O-12312312';

$magstripe = 'no';

Simage_front = '12345678901234567890123456789...";
Simage_back = '12345678901234567890123456789..";

/********************** ACH Info Associative Array *************************/
SachTemplate = array(sec =>$sec,
cust_first_name => S$cust_first_name,
cust_last_name => $cust_last_name,
cust_addressl => $cust_addressl,
cust_address2 => $cust_address2,
cust_city => $cust_city,
cust_state => $cust_state,
cust_zip => $cust_zip,
micr => S$micr,
dl_num => $dl_num,
magstripe => Smagstripe,
image_front => $image_front,
image_back => $image_back
)i

[KKK KK F KKK KK F KKK I K F AKX x KK ACH TNFO ODJ@Ch % % %k dok sk sk koo o &k ke ok ok & %k ok & & %k Kok /

SmpgAchInfo = new mpgAchInfo ($achTemplate);

/************************ Transaction Object *******************************/
SmpgTxn = new mpgTransaction($txnArray);

/************************ Set ACH Info *************************************/

SmpgTxn->setAchInfo ($mpgAchInfo) ;

JRHEKKK KKK KK KK KKK KKK I AKX X ReqUeSt ODFECT * % % H ok & %k kdok s & ko o & %k ok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KK F KKK KKK KX F AKX X MPGHELPSPOST ODFECT * % %k H ok k% koo o & ok ook o & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEKAK KKK K KKK KKK KKK KA XX ReSPONSE ODFECE * % Kk 4 % %k ok ok sk ok ok o & kK ok ok X XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode()) ;
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());
print ("\nTransTime = " . S$mpgResponse->getTransTime());
print ("\nTicket = " . SmpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 67 of 117

eSELECTplus PHP API November 6, 2012

ACH Credit

In the ACH Credit (us_ach_credit) example we require several mandatory variables: store_id, api_token, order_id,
amount, sec, routing_num, account_num, and account_type. There are also many optional variables, such as the
cust_id, check_num and the customer details. Please refer to Appendix A. Definition of Request Fields and Appendix
F. AchInfo Fields for variable definitions. Please note that the mpgAchlInfo fields are not used for any type
of address verification or fraud check.

NéE Please note, the ACH Credit transaction may only be submitted with a SEC Code of ‘ppd’ or ‘ccd’.

<?php

require "../mpgClasses.php";

$store_id="monusga002"';

$Sapi_token='gatoken';

Sorderid='ach-"'.date ("dmy-G:i:s");

Samount='1.00";

$custid = 'my cust id';

/************************ Transactlon Array **********************************/

$txnArray=array (type=>'us_ach_credit',
order_id=>S$orderid,
cust_id=>$custid,
amount=>$amount
)i

JrE KK KKKk kkkkkkkkkkkkkkkxkx ACH Info Variables ** r*xxkkkkkkkkkhkkhkkkhkkhkkkkkkxk /

$sec = 'ppd';
Scust_first_name = 'Bob';
Scust_last_name = 'Smith';
Scust_addressl = '101 Main St';
$cust_address2 = 'Apt 102';

$cust_city = 'Chicago';

Scust_state = '"IL';

$cust_zip = '123456"';

$routing_num = '54321"';

Saccount_num = '23456"';

Scheck_num = '100"';

Saccount_type = 'savings';
/********************** ACH Info Associative Array *************************/
SachTemplate = array(sec =>$sec,

cust_first_name => $cust_first_name,

cust_last_name => $cust_last_name,

cust_addressl => $cust_addressl,

cust_address2 => S$cust_address2,

cust_city => S$cust_city,

cust_state => $cust_state,

cust_zip => $cust_zip,

routing_num => $routing_num,

account_num => $account_num,

check_num => $check_num,

account_type => $account_type
/*******************1;***** ACH Info ObjeCt ********************************/

$mpgAchInfo = new mpgAchInfo ($achTemplate);

JXXXKKKKKKKKKKKKKAKAXA*X %% Transaction Object **XXXXXXXXXXXXKXKKKKKKKKKKKKKK KK [

SmpgTxn = new mpgTransaction($txnArray);
/************************ Set ACH Info *************************************/

SmpgTxn->setAchInfo ($mpgAchInfo) ;

JRHEKKK KKK KK KKK KKK I AKX X RequUeSt ODFECT ** % H ok & %k kdok sk ko o & %k ok ok & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KKK KK F AKX XK A XX MPGHELPSPOST ODFECT * % %k H ok k& ko o & ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEKKK KKK K KKK KKK KKK AKX X RESPONSE ODFECE * % H k4 % ko ok & ok ok o & %Kok ok X XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . $mpgResponse->getReferenceNum()) ;
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());

print ("\nMessage =

print ("\nAuthCode =
print ("\nComplete =

print ("\nTransDate
print ("\nTransTime
print ("\nTicket =
print ("\nTimedOut
7>

n

"

"

"

SmpgResponse->getMessage ()) ;
SmpgResponse—->getAuthCode ()) ;
SmpgResponse—->getComplete());

" . SmpgResponse->getTransDate());

" . SmpgResponse->getTransTime());

$mpgResponse->getTicket ());
$mpgResponse->getTimedOut ()) ;

Page 68 of 117

eSELECTplus PHP API November 6, 2012

ACH Reversal

The ACH Reversal (us_ach_reversal) transaction is used to reverse a prior ACH Debit transaction that was
performed within the past 3 months. No amount is required because a Reversal is always for 100% of the original
transaction. To send a ‘us_ach_reversal’ the order_id and txn_number from the ‘us_ach_debit’ are required; it does
not require the bank account information to be re-entered.

<?php

require "../mpgClasses.php";

JRHEARKK KKK K KKK KK XK IR AKX RequUest Variables %% &k kk &k xkdok & & xkdok & & xkkk k& xk k%% /

$store_id="monusga002"';
$Sapi_token='gatoken';

JREK KKK KKKk kkkkkkkkkkk*kk* Transaction Variables *rxxkkkkkkkkkkkkkkkkkkkkkkkkkk /

$orderid="'ORDER_ID_FROM_ACHDEBIT';
$txnnumber = 'TXN_ID_FROM_ACHDEBIT';

JRXKXKKKKKKKKKKKKKKXKAKXAXA* Transaction Array XA XXX XXX XXX XXX KX KK KK KK KK KK KKKKKK KK [

StxnArray=array (type=>'us_ach_reversal',

order_id=>$orderid,

txn_number=>$txnnumber

)i
/************************ Transaction Object *******************************/
SmpgTxn = new mpgTransaction($txnArray);
/************************ Request Object **********************************/
SmpgRequest = new mpgRequest ($mpgTxn) ;
/************************ mquttpSPOSt Object ******************************/
SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JEXKKXKKXKKKKKKKKKKKKKKXKKXKAX ReSPONSe ObDJeCt FAXXXXXXXX XX KKX KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 69 of 117

eSELECTplus PHP API November 6, 2012

ACH FI Enquiry

The ACH FI Enquiry (us_ach_fi_inquiry) transaction allows the merchant to submit a routing number and verify
which Financial Institution it belongs to. This transaction also allows the merchant to verify whether or not this is a
valid routing number before submitting an ACH Debit or Credit transaction.

<?php
require "../mpgClasses.php";

JRHEARKK KKK K KKK KK XK IR AKX RequUest Variables %% &k kk &k xkdok & & xkdok & & xkkk k& xk k%% /

$store_id="monusga002"';
$Sapi_token='gatoken';

JREK KKK KKKk kkkkhkkkkkkk*kk* Transaction Variables *r*xxkkkkkkkkkkkkkkkkkkkkkkkkkk /

Sroutingnum='9123456";
/************************ Transactlon Array **********************************/
$txnArray=array (type=>'us_ach_fi_enquiry',

routing_num=>$routingnum

)i
/************************ Transactlon Object *******************************/
SmpgTxn = new mpgTransaction($txnArray);

JRHEKK KKK KKK KKK KK XK IR AKX ReqUeSt ODFECT * %k H ok &%k kdok s sk ok ook o & %k Kok & & %k ok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KK F KKK KKK KKK A XX MPGHELPSPOST ODFECT * % %k H ok k& ko ok & ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEARKK KKK KKK KKK KKK K KKK X RESPONSE ODF@CE * % Kk 4 % %k ok ok sk ok ok o & kK ok & K XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

?>

Page 70 of 117

eSELECTplus PHP API November 6, 2012

18. ACH Transactions with Extra Features — Examples

In the previous section the instructions were provided for the ACH transaction set. eSELECTplus also provides
several extra features/functionalities for the ACH transactions. These features include storing customer and order
details and sending transactions to the Recurring Billing feature. Recurring Billing must be added to your account,
please call the Service Centre at 1-866-423-8475 to have your profile updated.

ACH Debit (with Customer and Order details)

Below is an example of sending an ACH Debit (us_ach_debit) with the customer and order details. If one piece of
information is sent then all fields must be included in the request. Unwanted fields need to be blank. Please see
Appendix C. CustlInfo Fields for description of each of the fields. Customer details can only be sent with the ACH
Debit transaction. It can be used in conjunction with other extra features such as Recurring Billing. Please note
that the mpgCustinfo fields are not used for any type of address verification or fraud check.

<?php
require "../mpgClasses.php";

/************************ Request Variables ************‘k*********************/
$store_id="monusga024';
$api_token='gatoken';

/************************ Transaction variables ******************************/
Sorderid='ach-"'.date ("dmy-G:1i:s");
Yy
Samount='1.00";
$custid = 'my cust id';

/‘k*********************** Transactlon Array **********************************/
StxnArray=array (type=>'us_ach_debit"',

order_id=>S$orderid,

cust_id=>$custid,

amount=>S$amount

)i

JRE KK KKKk kkkkkkkkkkkkkkkxkx ACH Info Variables ** r xkkkkkkkkkhkkhkkkkkkkkkkkxk /

$sec = 'ppd';
Scust_first_name = 'Bob';
Scust_last_name = 'Smith';
$cust_addressl = '101 Main St';
$cust_address2 = 'Apt 102';
$cust_city = 'Chicago';
$cust_state = 'IL';
$cust_zip = '123456"';
Srouting_num = '987654321"';
Saccount_num = '23456"';
$check_num = '100';
Saccount_type = 'savings';

/********************** ACH Info Associative Array *************************/
SachTemplate = array(
sec =>$sec,
cust_first_name => $cust_first_name,
cust_last_name => $cust_last_name,
cust_addressl => $cust_addressl,
cust_address2 => $cust_address2,
cust_city => S$cust_city,
cust_state => $cust_state,
cust_zip => $cust_zip,
routing_num => $routing_num,
account_num => $account_num,
check_num => $check_num,
account_type => $Saccount_type
)i

[KKK KKK F KKK KK F KA K I K F AKX x KK ACH TNFo ODJ@Ch %% %k dok ok sk ok ook o & ko ok & %k Kok & & %k ok /

SmpgAchInfo = new mpgAchInfo ($SachTemplate);

J KKK K KF KKK KKK K XK AKX X CUSETINEO ODF@CE * % H ok A & %k ok o & koo o & %k ok ok X XK Kok & X % KKk [

SmpgCustInfo = new mpgCustInfo();

/********************* Set E,mail and Instructions **************/
Semail ='Joe@widgets.com';
SmpgCustInfo->setEmail ($email) ;

Sinstructions ="Make it fast";
$mpgCustInfo->setInstructions ($instructions);

Page 71 of 117

eSELECTplus PHP API

November 6, 2012

/********************* Create Bllllng Array and Set lt **********/
$billing = array(first_name => 'Joe',

last_name => 'Thompson',

company_name => 'Widget Company Inc.',

address => '1l1l1l Bolts Ave.',

city => 'Toronto',

province => 'Ontario',

postal_code => 'M8T 1T8',

country => 'Canada',

phone_number => '416-555-5555",

fax => '416-555-5555",

taxl => '123.45"',

tax2 => '12.34"',

tax3 => '15.45",

shipping_cost => '456.23");

$SmpgCustInfo->setBilling($billing);

/********************* Create Shipping Array and Set it **********/
$shipping = array(first_name => 'Joe',

last_name => 'Thompson',

company_name => 'Widget Company Inc.',

address => '1l1l1l Bolts Ave.',

city => 'Toronto',

province => 'Ontario',

postal_code => 'M8T 1T8',

country => 'Canada',

phone_number => '416-555-5555",

fax => '416-555-5555");

S$SmpgCustInfo->setShipping ($shipping) ;

/********************* Create Item Arrays and Set them **********/
$iteml = array (name=>'item 1 name',
quantity=>'53",
product_code=>'item 1 product code',
extended_amount=>'1.00");

SmpgCustInfo->setItems ($iteml) ;

$item2 = array(name=>'item 2 name',
quantity=>'53",
product_code=>'item 2 product code',
extended_amount=>'1.00");

SmpgCustInfo->setItems ($item2) ;

JXXKXKKKKKKKKKKKKXKAKXAXA %% Transaction Object * XXX XXXXXXX XK KK KK KK KK KK KKKKKKAK [

$SmpgTxn = new mpgTransaction($txnArray);

J KA KK KKKk kkkkkkkkkkkkkkk*x Sot ACH Tnfo Frkkkkkkhkkhhkhkhhkhhkkhkkhkkkkkkkkkkkkkkk /

$mpgTxn->setAchInfo ($mpgAchInfo) ;

JREK KKK KKk hkkkhkkkkkkkhkkkk*x Sot CUSTINTO Frkrkkkkkhkkhhkhkhhkhhkkkkhkkkkkkkkkkkkkkk /

SmpgTxn->setCustInfo ($mpgCustInfo) ;

JERXXKKKKKKKKKKKKKKXKKXXXXXX Request ODJect FAXXXXXXXXXXXXXXXXXKXXXXXXXXXXXAAAK /

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KK KKK KX KA A XX MPGHELPSPOST ODFECT * % % % H ok k& ok ok o & koo ok & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEKAK KKK KK KKK AKKK XK HF AKX X RESPONSE ODF@CE * %Kk 4 % ko ok &k ok o & kK ok ok X XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode()) ;
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . SmpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());
print ("\nTransTime = " . S$mpgResponse->getTransTime());
print ("\nTicket = " . SmpgResponse->getTicket());

print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

7>

Page 72 of 117

eSELECTplus PHP API November 6, 2012

ACH Debit (with Recurring Billing)

Recurring Billing is a feature that allows the transaction information to be sent once and then re-billed on a
specified interval for a certain number of times. This is a feature commonly used for memberships, subscriptions, or
any other charge that is re-billed on a regular basis. The transaction is split into two parts; the recur information
and the transaction information. Please see Appendix D. Recur and Recur Update Fieldsfor descry iption of each of
the Recur fields. The optional customer and order details can be included in the transaction using the method
outlined above — ACH Debit (with Customer and Order Details). Recurring Billing must be added to your account,
please call the Service Centre at 1-866-423-8475 to have your profile updated. Please note that the Recurring
Billing fields are only available to SEC codes 'ppd’ ‘ccd’ and 'web’.

<?php
require "../mpgClasses.php";

JRXXKKXKKKKKKKKKKKKXKXKXA XA % Request Variables ¥ ¥ XXXk XXX XXX XXX KK KKKKKKKKKKKKKK KK [

$store_id="'monusga024';
Sapi_token='gatoken';

/‘k*********************** Transactlon Varlables *‘k*****‘k**********************/
Sorderid='ach-"'.date ("dmy-G:i:s");

$Samount='1.00";

$custid = 'my cust id';

/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_ach_debit"',

order_id=>S$orderid,

cust_id=>$custid,

amount=>$amount

)i

JRKR Kk kkkkkkkkkkkkkkkkkkkkk ACH Tnfo Variables **xkkkkkk ks kkokkkkkkkkkkkkkkk /

$sec = 'ppd';
Scust_first_name = 'Bob';
Scust_last_name = 'Smith';
Scust_addressl = '101 Main St';
Scust_address2 = 'Apt 102';
$cust_city = 'Chicago';
$cust_state = 'IL';
Scust_zip = '123456"';
Srouting_num = '987654321"';
Saccount_num = '23456"';
Scheck_num = '100';
$account_type = 'savings';

/********************** ACH Info Associative Array *************************/
$achTemplate = array(
sec =>$sec,
cust_first_name => $cust_first_name,
cust_last_name => $cust_last_name,
cust_addressl => $cust_addressl,
cust_address2 => $cust_address2,
cust_city => $cust_city,
cust_state => $cust_state,
cust_zip => $cust_zip,
routing_num => $routing_num,
account_num => $account_num,
check_num => $check_num,
account_type => Saccount_type
)i

JERKKXKKKKKKKKKKKKKKKAKAXA*X%% ACH INFfo ObJject *AXXXXXXXXKXKXKKKKKKKKKKKKKKKKKKAK [

$mpgAchInfo = new mpgAchInfo ($achTemplate);

JREK KKK KKKk Kk Kk Kk kkkkkkxk*x Rocur Variables ***xkkkkxkkkkkkkkkhkkhkkkkkkkkk*x /

$SrecurUnit = 'day';
$SstartDate = '2008/11/30"';
$SnumRecurs = '4';
SrecurInterval = '10';
$SrecurAmount = '31.00';
$startNow = 'true';

[KKK KKK KK KKK KK KKK KKK KK I AKX K RQCUL ATTAY FHF KK F K H A& A K H ok A & XK H ok kX x KKk [

SrecurArray = array(recur_unit=>$recurUnit, // (day | week | month)
start_date=>$startDate, //yyyy/mm/dd
num_recurs=>$numRecurs,
start_now=>$startNow,
period => S$recurlnterval,

Page 73 of 117

eSELECTplus PHP API

November 6, 2012

recur_amount=> $recurAmount
)i

JEKXKKKKXKKKKKKKKKKKKKKKKXKKXKXXKAXX RECULr ODJECt FAXXXXXXXXX XX XX XXXXXX XXX XK/

SmpgRecur = new mpgRecur ($SrecurArray) ;

JXXXKKKKKKKKKKKKKKXKAXAX%% Transaction Object * XXX XXXXXXXXX KK KK KK KK KK KK KKKKAK [

SmpgTxn = new mpgTransaction($txnArray);

J KKKk ok kkkkkkkkkkkkkkkkkkk Sat ACH TNFO ** %k kkkkokkk ok kokkokkk ok kkokkok ok ok ok ok kokkkkkkk /

SmpgTxn->setAchInfo ($mpgAchInfo) ;

JRHEKKK KKK KK KK KKK KKK KKK XK IR AKX Set Recur ObJect *xH &% xkkks & xkkksxxkkkx/

SmpgTxn->setRecur ($mpgRecur) ;

JRHEKK KKK KKK KKK KK XK IR AKX RequUeSt ODFECT ** % H k& % kkdok s sk koo o & %k Kok & & %k Kok & & %k K/

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK F KK KKK KX KA AKX MPGHELPSPOST ODFECT * % % % H ok k% ko o &k ko ok & %k Kok & & %k Kok /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JXKKXKKKKKKKKKKKKKKKKXKXXAX ReSPONSE ODJeCt FAXXXXXXXX XX KKKKKK KK KK KK KK KKKKKKAK [

$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . SmpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nRecurSuccess = " . S$mpgResponse->getRecurSuccess());
?>

Page 74 of 117

eSELECTplus PHP API November 6, 2012

19. Administrative Transactions

Included below is the sample code for the Administrative transactions that can be found in the “Examples” folder of
the PHP APl download. Administrative transactions allow the user to perform such tasks as manually closing an
open Batch and preparing the funds for settlement. Also, the user may retrieve details about the currently open
Batch without needing to close it.

Batch Close

At the end of every financial day (11pm EST) the Batch needs to be closed in order to have the Credit Card funds
settled the next business day and the ACH funds settled, on average, within the next 5 business days. By default
eSELECTplus will automatically close your Batch daily, whenever there are funds in the open Batch. Some
merchants prefer to control Batch Close, and disable the automatic functionality. For these merchants we have
provided the ability to close your Batch through the API. When a Batch is closed the response will include the
transaction count and amount for each type of transaction. To disable automatic close please access the Merchant
Resource Centre (https://esplus.moneris.com/usmpg), go to the Admin menu item and then choose Store Settings;
the Batch Close options are located on this page.

<?php
require "../mpgClasses.php";

/************************ Request Variables *******************************/
Sstore_id=Sargv[1l];
Sapi_token=$argv[2];

JRHEK KKK Kk kkkkkkkkkkkkkkk* Transaction Variables ***xkkxxkkkkkkkkkkkkkkkkkkkk*x /

Secr_number=Sargv([3];

/************************ Transaction Array *******************************/
StxnArray=array (type=>'us_batchclose',

ecr_number=>$ecr_number

)i

J KKK KKK KKK KKK AKKK XK FKRAXX Transact 10N ODFECh %% %k Hok &k xkdok k& xkdok & & %k Hok & & %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

JRHEKKK KKK K KKK KK XK I KA XX RequUeSt ODFECT ** xH k& %k kdok sk ko o & %k ok ok & %k Kok & & %k K/

SmpgReg=new mpgRequest ($mpgTxn) ;

[RH KKK KK F KKK KK F AKX XK AKX MPGHELPSPOST ODFECT * % %k H ok k% koo ok & ke ok ok & %k Kok & & %k Kok /

SmpgHttpPost=new mpgHttpsPost ($store_id, $api_token, $mpgReq) ;

JRHEKKK KKK KK KKK KKK XK I KA XX RESPONSE ODF@CE * % Kk 4 % %k ok o & ok ok o & %Kok ok & XK Kok & X % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

JRXKKKKKKKKKKKXKXKAR Ak %% %% Array of Credit Cards *** ¥ XXX XXXXXXXKXKKKKKKKKKKKK [

$creditCards = $mpgResponse->getCreditCards ($ecr_number) ;

/************************ Dlsplay Loop ‘k*‘k**********************************/
for ($1i=0; $i < count(ScreditCards); $i++)

{
print "\nCard Type = $creditCards([$i]";

print "\nPurchase Count = "
. $SmpgResponse->getPurchaseCount ($ecr_number, ScreditCards[$i]);

print "\nPurchase Amount = "
. S$SmpgResponse->getPurchaseAmount ($ecr_number, ScreditCards[$i]) ;

print "\nRefund Count = "
. S$SmpgResponse->getRefundCount ($ecr_number, $ScreditCards([$i]);
print "\nRefund Amount = "

. S$SmpgResponse->getRefundAmount ($ecr_number, $creditCards[$i]) ;

print "\nCorrection Count = "
. SmpgResponse->getCorrectionCount ($ecr_number, $creditCards[$i]);

print "\nCorrection Amount = "
. SmpgResponse->getCorrectionAmount ($ecr_number, ScreditCards[$i]);

Page 75 of 117

eSELECTplus PHP API

November 6, 2012

Open Totals

Open Totals allows the merchant to retrieve details about all Credit Card transactions within the currently open

Batch. The response will include the transaction count and amount for each type of transaction
returns a similar response to the Batch Close without closing the current Batch.

<?php

require "../mpgClasses.php";

JRHEARKK KKK K KKK KK KKK AKX RequUest Variables %% &k kk &k akdok & & xok ok & & %k kok &k & xkk k%% /

$store_id=$argv([1l];
$api_token=$argv([2];

J KKKk Kk kkkkkkkkkkkkkkkkk Transaction Variable ** k% xkkkkkkkkkkkkkkkkkkkkkxkk /

Secr_number=$argv[3];

JRXKXKKKKKKKKKKKKXKKXKAXAXA* Transaction Array XA XXX XXX X XXX XX KX KK KK KK KK KK KKKKKKAK [

StxnArray=array (type=>'us_opentotals',

JXKXKKKKKKKKKKKKXKAKAXA %% Transaction Object **X XXX XXXXXXXX KX KK KK KK KK KKKKKKAK [

SmpgTxn

JRXXKKKKKKKKKKKKKKKKXXXAXX RequUest ODJeCt FAXXXXXXXXXXXXXXXXXXXXXKXKXXXXXXX XA/

ecr_number=>$ecr_number
)i

= new mpgTransaction(StxnArray);

SmpgReg=new mpgRequest (SmpgTxn) ;

JERKKXKKKKKKKKKKKKKKXKAKAXA*X MPGHELLPSPOSt ObJject XA XXX XXX XX XX KX KK KK KK KK KKKKKK KK [

SmpgHttpPost=new mpgHttpsPost ($store_id, $api_token, $mpgReq) ;

JRHEARKK KKK KK KKK KKK I KA XX RESPONSE ODFECE * %Kk 4 %k ko ok sk ok ok o & %K Kok ok X XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

[RHEAKKK KKK KK KKKk KK xxFKkkxx Array of Credit Cards

ScreditCards = $mpgResponse->getCreditCards ($ecr_number) ;

JRHEARKK KKK K KKKk K x KKk xx Loop through Array and Display *****#k&xxkkksxxxkk*/

for ($i=0; $i < count($creditCards); S$i++)

{

print

print

print

print

print

print

print

"\nCard Type = S$creditCards[$i]";

"\nPurchase Count = "
SmpgResponse->getPurchaseCount ($ecr_number, ScreditCards([$i]);

"\nPurchase Amount = "

SmpgResponse->getPurchaseAmount ($ecr_number, $creditCards[$1i]);

"\nRefund Count = "
SmpgResponse->getRefundCount ($ecr_number, ScreditCards[$i]);

"\nRefund Amount = "
SmpgResponse->getRefundAmount ($ecr_number, $creditCards[$i]);

"\nCorrection Count = "

SmpgResponse->getCorrectionCount ($Secr_number, $creditCards[$i]);

"\nCorrection Amount = "

SmpgResponse->getCorrectionAmount ($ecr_number, ScreditCards[$i]);

ok ok ok ok ok ok ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok Kk ok /

. Open Totals

Page 76 of 117

eSELECTplus PHP API November 6, 2012

Card Verification

The Card Verification (us_card_verification) transaction is available to check the validity of a credit card, expiry date
and any additional details, such as the Card Verification Digits or Address Verification details. It does not verify the
available amount or lock any funds on the credit card. The CardVerification transaction requires several variables
(store_id, api_token, order_id, pan, expdate). Also, Address Verification (AVS) is required while the Card
Verification Digits (CVD) are optional. This transaction type will not place a charge on the credit card. Please refer
to Appendix A. Definition of Request Fields for variable definitions.

<?php

require "../mpgClasses.php";

/************************ Request variables **********************************/
$store_id="monusga002"';

$Sapi_token='gatoken';

/************************ Transaction variables ******************************/
Sorderid="cardverification".date ("dmy-G:i:s");

Span="4242424242424242";

Sexpiry_date="1111";

/************************** AVS variables *****************************/
$Savs_street_number = '201"';

Savs_street_name = 'Michigan Ave';

$avs_zipcode = '"MIMIM1';

/************************** CVD Varlables *****************************/
$cvd_indicator = '1';

Scvd_value = '198';

/********************** AVS Associative Array *************************/
SavsTemplate = array(avs_street_number=>$avs_street_number,
avs_street_name =>$avs_street_name,
avs_zipcode => $avs_zipcode
)i

/********************** CVD Associative Array *************************/
ScvdTemplate = array (cvd_indicator => $cvd_indicator,

cvd_value => $cvd_value

)i
/************************* AVS Object ********************************/

SmpgAvsInfo = new mpgAvsInfo (S$SavsTemplate);

[KKK KKK KK KKK KK KKK KX KK CYD O F@CE KK %K Kok ok & %k ok ok & %Kok ok & XK Kok & X X KKk k)

SmpgCvdInfo = new mpgCvdInfo ($cvdTemplate) ;
/************************ Transaction Array **********************************/
StxnArray=array (type=>'us_card_verification',

order_id=>Sorderid,

cust_id=>"'cust"',

pan=>$pan,

expdate=>$expiry_date

)i

/************************ Transactlon Object *******************************/
$SmpgTxn = new mpgTransaction($txnArray);
/************************ SQt AVS and CVD *****************************/
$mpgTxn->setAvsInfo ($mpgAvsInfo);
$mpgTxn->setCvdInfo ($mpgCvdInfo) ;

JEXXKKXKKKKKKKKKKKKKKXXXXXAX Request ODJeCt FAXXXXXXXXXXXXXXXXXXXXXXXXX XXX XA K/

SmpgRequest = new mpgRequest ($SmpgTxn) ;
/************************ mquttpSPOSt Object ******************************/

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, $mpgRequest) ;

JXKKXKKXKKKKKKKKKKKKXKKXKKXXAX ReSPONSEe ObDJeCt *AXXXXXXXX XX KK KK KK KK KK KK KK KKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . S$mpgResponse->getReceiptId());

print ("\nTransType = " . S$mpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nAuthCode = " . $mpgResponse->getAuthCode());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . S$mpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTicket = " . S$mpgResponse->getTicket());

print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

print ("\nCardLevelResult = " . SmpgResponse->getCardLevelResult());
7>

Page 77 of 117

eSELECTplus PHP API November 6, 2012

Encrypted Card Verification

Similar to the regular Card Verification transactionmentioned above, the Encrypted Card Verification
(us_enc_card_verification) transaction is available to check the validity of a credit card, expiry date and any
additional details, such as the Card Verification Digits or Address Verification details. It does not verify the available
amount or lock any funds on the credit card. The Encrypted Card Verification requires the card data to be keyed in
via the Moneris provided encrypted MSR device. This transaction requires several variables (store_id, api_token,
order_id, enc_track2 and device_type). Also, Address Verification (AVS) is required while the Card Verification Digits
(CVD) are optional. This transaction type will not place a charge on the credit card. Please refer to Appendix A.
Definition of Request Fields for variable definitions.

<?php
require "../mpgClasses.php";

JREXXKKKKKKKKKKKKKKXKXKXA XA % Request Variables * ¥ ¥ XX XXX XX XXX XXX KKKKKKKKKKKKKKKKAK [

$store_id="monusga002";
$Sapi_token="gatoken";

JRhKkkkkkkkkkkkkkkkkkkkk*k Transaction Variables ** %k kkkkkkkkkkkkkkkkkkkkkkkkkx /

Sorderid="enc_cardverification".date ("dmy-G:i:s");

$Samount="1.00";

Senc_track2="02D901801F4F2800039B%*4924******x** 4030 "TESTCARD/MONERT S * % * s ok ok ok k sk sk ok ok ok k ko ok ok ok ok ok ok ok ok ok ok ok ook ok ok sk ok ok ok ko ok 5 49D 4k % % K
FAKLOIQ=HAFF IR A X I KA XK A A XK A A PXAT]IE50CT8335A5024949516FDASA68A91C4FBABLI279DD1DE2283DBEBB2C6B3FDEACF7B5B314219D76C00
890F347A9640EFE90023E31622F5FD95C14C0362DD2EAB28ADEB46B8B577DA1IA18B707BCC7TE48068EFF1882CFB4B369BDC4BB646C870D6083
239860B23837EA91DB3F1D8AD066DAAACE2B2DA18D563E4F1EF997696337B8999E9CT707DEC4CB0410B887291CAF2EE449573D01613484B807
60742A3506C31415939320000A000283C5E03";

$Sdevice_type="idtech";

JREK KKK KKKk kkhkkhkkkkkhkkkkxk*x AVS Variables **xkkkkkkkkkhkkhkkkhkkhkkkkkkkkk*x /

Savs_street_number = '201';
Savs_street_name = 'Michigan Ave';
Savs_zipcode = 'MIMIM1';

JREK KKK KKKk khkkkkkkkhkkkkxk*x CYD Variables ***xkkkkkkkkkhkkkkkhkkhkkkkkkkkk*x /

$cvd_indicator = '1"';
Scvd_value = '198';

[KKK KK KKK K KKK AKX KK AKX AVS Associative Array FERFFEEE KA KKK K KKK KKK XK KKK/

SavsTemplate = array(
avs_street_number=>$avs_street_number,
avs_street_name =>$avs_street_name,

avs_zipcode => $avs_zipcode

)i

[RHEAKKK KKK AKX KKK KX XK FRK CUYD Associative Array * X xxFkk & xkk ok kxk Kk kX x KKk K/

$cvdTemplate = array(
cvd_indicator => $cvd_indicator,
cvd_value => $cvd_value
)i

/************************** AVS Object ********************************/
$mpgAvsInfo = new mpgAvsInfo ($avsTemplate);

JERKKXKKKKKKKKKKKKKKKKKKXKXXAK CUD ObJECt FAXXXXXXXXXXXKXKXKKX XXX XXX KKK AR/

$SmpgCvdInfo = new mpgCvdInfo ($cvdTemplate);

JERXXKKXKKKKKKXKKKKKKXKXXXAXA* Transaction Array XXX XXX XXX XXX XX KXKKKK KK KK KK KKKKKK KK [

StxnArray=array (type=>'us_enc_card_verification',
order_id=>Sorderid,
cust_id=>"'cust"',
enc_track2=>Senc_track2,
device_type=>$device_type
)i

J KKK KK KKK KKK KA KKK FRAXX Transact1on ODFECh %% %k H ok & & xkdok k& %k dok & & %k Hok & % %k Kok /

SmpgTxn = new mpgTransaction($txnArray);

Page 78 of 117

eSELECTplus PHP API

November 6, 2012

JREK KKK KKKk kkkkkkkkkkk*kk*x Sot AVS and CVD ***kkkkkkkkkkhkkkkkhkkhkkkkkkkkk*x /

$mpgTxn->setAvsInfo ($mpgAvsInfo) ;
$mpgTxn->setCvdInfo ($mpgCvdInfo) ;

JRXXKKXKKKKKKKKKKKKXKXKXXXAXAX RequUest ODJeCt FAXXXXXXXXXXXXX XX XXX XXXXXXXXXXXAAAK /

SmpgRequest = new mpgRequest ($SmpgTxn) ;

[KKK KK F KKK KKK KX F A AKX MPGHELPSPOST ODFECT * % %k H ok k& koo ok & koo ok & %k Kok ok & %k Kk /

SmpgHttpPost = new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JRHEKKK KKK KK KKK AKK KKK I KKK X ReSPONSE ODF@CE * % H k4 %k ko ok sk ok ok o & kK ok ok K XK Kok & & % KKk [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nCardType = " . S$mpgResponse->getCardType());

print ("\nTransAmount = " . $mpgResponse->getTransAmount());
print ("\nTxnNumber = " . S$mpgResponse->getTxnNumber ());

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nTransType = " . SmpgResponse->getTransType());

print ("\nReferenceNum = " . S$mpgResponse->getReferenceNum());
print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nAuthCode = " . S$mpgResponse->getAuthCode());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . SmpgResponse->getTimedOut ());

print ("\nMaskedPan = " . SmpgResponse->getMaskedPan());

print ("\nAVSResponse = " . $mpgResponse->getAvsResultCode());
print ("\nCVDResponse = " . $mpgResponse->getCvdResultCode());
print ("\nCardLevelResult = " . S$mpgResponse->getCardLevelResult());
?>

Page 79 of 117

eSELECTplus PHP API November 6, 2012

Recur Update

Recur Update allows a user to alter characteristics of a previously registered Recurring Billing transaction. This
feature is commonly used to update a customer’s credit card information and the number of times it is to be billed
(recur). Only fields sent to the gateway will be updated. Please see Appendix A. Definition of Request Fields and
Appendix D. Recur and Recur Update Fields for description of each of the fields.

Recur Update — Credit Card example

<?php
require "../mpgClasses.php";

JERXKXKKKKKKKKKKKKKKKKKKKXXXXXX* Request Variables XX ¥ XXX XXX XXX XXX XXX XX XXXXXXXX XXX/

Sstore_id="'monusqga002"';
Sapi_token='gatoken';

JKE KKKk kkkkkkkkkkkkkkkkk*x* Transactional Variables ***xkkkkkkkkkkkkkkkkhkkkkkkkkx /

Stype='us_recur_update';
Sorder_id="'ORDER_ID_FROM_ORIGINAL_TXN';

//The following fields can be updated for a CC, ACH or Pinless Debit transaction
Scust_id="'MY CUST ID';

Srecur_amount='1.00";

Sadd_num='20";

Stotal_num='999"';

$hold = 'false';

Sterminate = 'false';

//The pan & expdate can be updated for a Credit Card or Pinless Debit transaction
Span='5454545454545454";
Sexpdate='1111";

//The AVS details can only be updated for a Credit Card transaction

Savs_street_number = '112';
$avs_street_name = 'lakeshore blvd';
Savs_zipcode = '123123';

//The p_account_number & presentation_type can only be updated for a Pinless Debit transaction
Sp_account_number="Account al2345678 9876543";
Spresentation_type = "X";
/*********************** Transactional Associative Array **********************/
$txnArray=array ('type'=>$type,
'order_id'=>$order_id,
'cust_id'=>Scust_id,
'recur_amount'=>$recur_amount,
'pan'=>$pan,
'expdate'=>$expdate,
'p_account_number'=>$p_account_number,
'presentation_type'=>$presentation_type,

'add_num_recurs' => $add_num,
'total_num_recurs' => $total_num,

'hold' => $hold,

'terminate' => Sterminate,
'avs_street_number' => $avs_street_number,
'avs_street_name' => $avs_street_name,

'avs_zipcode' => S$avs_zipcode
)i

JERXKXKKKKKKKKKKKKKKKKXKKXKAXXA*X %% Transaction Object X ¥ XX XXXXXXXXX KX KKKKKKKKKKKK KK [

SmpgTxn = new mpgTransaction($txnArray);
/****************************** Request Object *******************************/

SmpgRequest = new mpgRequest ($SmpgTxn) ;
/***************************** HTTPS Post Object *****************************/

SmpgHttpPost = new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JERKKXKKKKKKKKKKKKKKKKKKKKKKKKXKAKK RESPONSE FAXAKKXKXKXKXKKXKK KK KK KK KKKKKKKKKKKKKKAK [

SmpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nResponseCode = " . S$mpgResponse->getResponseCode()) ;
print ("\nMessage = " . $mpgResponse->getMessage());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . SmpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nRecurUpdateSuccess = " . $mpgResponse->getRecurUpdateSuccess());
print ("\nNextRecurDate = " . $mpgResponse->getNextRecurDate());
print ("\nRecurEndDate = " . S$mpgResponse->getRecurEndDate());
?>

Page 80 of 117

eSELECTplus PHP API

November 6, 2012

Recur Update — Pinless Debit example

<?php
require "../mpgClasses.php";

[KKK KKK KKK K KKK K S KKK XK AKX Request Variables *x &% xkkk &k xk k& & xk k& & xkkk k% x /

$store_id="monusga002"';
$Sapi_token='gatoken';

JRrRkkkkkkkkkkkkkkkkkkkkk* Transactional Variables *x %k ks kkkkkkkkkkkkkkkkkkkkxk /

Stype='us_recur_update';
$order_id="'ORDER_ID_FROM_ORIGINAL_TXN';

//The following fields can be updated for a CC, ACH or Pinless Debit transaction
Scust_id='MY CUST ID';

$Srecur_amount='1.00";

Sadd_num='20";

$total_num='999"';

$hold = 'false';

Sterminate = 'false';

//The pan & expdate can be updated for a Credit Card or Pinless Debit transaction
Span='5454545454545454";
Sexpdate='1111";

//The AVS details can only be updated for a Credit Card transaction

//$avs_street_number = '112"';
//$avs_street_name = 'lakeshore blvd';
//$avs_zipcode = '123123';

//The p_account_number & presentation_type can only be updated for a Pinless Debit transaction
Sp_account_number="Account al2345678 9876543";
Spresentation_type = "X";

/*********************** Transactional Associative Array **********************/
$txnArray=array ('type'=>$type,
'order_id'=>$order_id,
'cust_id'=>$cust_id,
'recur_amount'=>$recur_amount,
'pan'=>$pan,
'expdate'=>$expdate,
'p_account_number'=>$p_account_number,
'presentation_type'=>$presentation_type,
'add_num_recurs' => $add_num,
'total_num_recurs' => S$total_num,
'hold' => $hold,
'terminate' => S$terminate,
'avs_street_number' => $avs_street_number,
'avs_street_name' => $avs_street_name,
'avs_zipcode' => $avs_zipcode
)i

[KKK KKK KK KKK KK KKK X XK FRK Transaction ODJect *FH &% xkksk k& akdk k& xkkk k& xkkk %% /

SmpgTxn = new mpgTransaction($txnArray);

[KKK KKK KKK KKK KK KK KKK KKK IR AKX RequUest ODFeCh **xH k&% akdok & & xkdok & & x kK ok &k & x KKk k A % /

SmpgRequest = new mpgRequest ($mpgTxn) ;

[KKK KKK KK KKK KKK F KKK XK kA% HTTPS PosSt ODJeCt *HFH &% %k dok k& akdok k& xkdkok &k & x kK k A % /

SmpgHttpPost =new mpgHttpsPost ($store_id, $api_token, SmpgRequest) ;

JEKKXKKKKKKKKKKKKKKKKKKKKKKKKKAKK RESPONSE FAKXAKKXKXKK KK KK KK KK KK KKKKKKKKKKKKKKAK [

$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nComplete = " . SmpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . S$mpgResponse->getTimedOut ());

print ("\nRecurUpdateSuccess = " . $mpgResponse->getRecurUpdateSuccess());
print ("\nNextRecurDate = " . $mpgResponse->getNextRecurDate());
print ("\nRecurEndDate = " . S$mpgResponse->getRecurEndDate());
?>

Page 81 of 117

eSELECTplus PHP API November 6, 2012

Recur Update — ACH example

<?php
require "../mpgClasses.php";

[KKK KKK KKK K KKK K KKK KKK IR K Request Variables *x k&% xkkk &k xkdok & & xk k& & xkkk k% x /

$store_id="'monusga002';
Sapi_token='gatoken';

JREK kKK kkkkkkkkkkkkkkkkk*x* Transactional Variables ***kkkkkkkkkkkkkkkkhkkkkkkkkx /

Stype='us_recur_update';
$order_id="'ORDER_ID_FROM_ORIGINAL_TXN';

//The following fields can be updated for a CC, ACH or Pinless Debit transaction
Scust_id='MY CUST ID';

$Srecur_amount="'1.00";

Sadd_num='20";

$total_num='999"';

$hold = 'false';

Sterminate = 'false';

//The pan & expdate can be updated for a Credit Card or Pinless Debit transaction
//$pan="5454545454545454";
//Sexpdate="'1111";

//The AVS details can only be updated for a Credit Card transaction

//$avs_street_number = '112"';
//$avs_street_name = 'lakeshore blvd';
//$avs_zipcode = '123123';

//The p_account_number & presentation_type can only be updated for a Pinless Debit transaction
//$p_account_number="Account al2345678 9876543";
//$presentation_type = "X";

/*********************** Transactional Associative Array **********************/
StxnArray=array ('type'=>$type,

'order_id'=>$order_id,

'cust_id'=>$cust_id,

'recur_amount'=>$recur_amount,

'pan'=>$pan,

'expdate'=>$expdate,

'p_account_number'=>$p_account_number,

'presentation_type'=>$presentation_type,

'add_num_recurs' => $add_num,
'total_num_recurs' => $total_num,

'hold' => $hold,

'terminate' => Sterminate,
'avs_street_number' => $avs_street_number,
'avs_street_name' => $avs_street_name,
'avs_zipcode' => $avs_zipcode

)i

[KKK KKK KK KKK K KKK X XK FRK Transaction ODJect *HxH &% xkksk k& akkk k& xkkk k& xkkk %% /

SmpgTxn = new mpgTransaction($txnArray);

[KKK KKK A KKK KKK KKK IR K KKK IR A XX RequUest ODFJeCh ** xH k&% xk ko & & xkdok & & x kK ok & & x KKk k A % /

SmpgRequest = new mpgRequest ($mpgTxn) ;

JEREXKXKKKKKKKKKKKKKKKKKKKXA KA XA K% HTTPS Post Object **AXXXXXXXXXXXXXKKKKKKKKKKKK KK [

SmpgHttpPost = new mpgHttpsPost ($store_id, $Sapi_token, $SmpgRequest) ;

JEXKXKKKKKKKKKKKKKKKKKKKKKKKAKAKK RESPONSE FAXAKXXKKXKXKK KK KK KK KK KKKKKKKKKKKKKKAK [

$mpgResponse=$mpgHttpPost->getMpgResponse () ;

print ("\nReceiptId = " . SmpgResponse->getReceiptId());

print ("\nResponseCode = " . S$mpgResponse->getResponseCode());
print ("\nMessage = " . SmpgResponse->getMessage());

print ("\nComplete = " . $mpgResponse->getComplete());

print ("\nTransDate = " . SmpgResponse->getTransDate());

print ("\nTransTime = " . S$mpgResponse->getTransTime());

print ("\nTimedOut = " . $mpgResponse->getTimedOut());

print ("\nRecurUpdateSuccess = " . $mpgResponse->getRecurUpdateSuccess());
print ("\nNextRecurDate = " . $mpgResponse->getNextRecurDate());
print ("\nRecurEndDate = " . S$mpgResponse->getRecurEndDate());
?>

Page 82 of 117

eSELECTplus PHP API November 6, 2012

20. What Information will | get as a Response to My Transaction Request?

For each transaction you will receive a response message. For a full description of each field please refer to
Appendix B. Definitions of Response Fields.

To determine whether a transaction is successful or not the field that must be checked is ResponseCode. See the
table below to determine the transaction result.

Response Code Result
0 — 49 (inclusive) Approved
50 — 999 (inclusive) Declined
Null Incomplete

For a full list of response codes and the associated message please refer to the Response Code document
available at https://developer.moneris.com

21. How Do | Test My Solution?

A testing environment is available for you to connect to while you are integrating your site to our payment gateway.
The test environment is generally available 7x24; however since it is a test environment we cannot guarantee 100%
availability. Also, please be aware that other merchants are using the test environment so you may see transactions
and user IDs that you did not create. As a courtesy to others that are testing we ask that when you are processing
Refunds, changing passwords and/or trying other functions that you use only the transactions/users that you
created.

When using the APIs in the test environment you will need to use test store_id and api_token. These are different
than your production IDs. The IDs that you can use in the test environment are in the table below.

TeSt IDS ..

.............. _ _ Username _ Password
monusqa002*** qatoken demouser abcl1234
monusqa003 gatoken demouser abcl1234
monusqa004 gatoken demouser abcl1234
monusqa005 qatoken demouser abcl1234
monusqa006 gatoken demouser abcl1234
monusqa024 * qatoken demouser abcl1234
monusqa025 ** qatoken demouser abcl1234

* test store ‘monusga024’ is intended for testing ACH transactions only

** test store ‘monusqa025’ is intended for testing both ACH and Credit Card transactions
*** test store ‘monusqa002’ is intended for testing the Pinless Debit transactions

When testing you may use the following test card numbers with any future expiry date.

Test Card Numbers

Card Plan Card Number

MasterCard 5454545454545454

Visa 4242424242424242 or 4005554444444403
Amex 373599005095005

Pinless Debit = 4496270000164824

Page 83 of 117

eSELECTplus PHP API November 6, 2012

When testing ACH transactions you may use the following test bank account details.

Test Bank Account Details
Financial Institution Routing Number |Account Number m

FEDERAL RESERVE BANK 011000015 Any number between 5-22 digits Any number

To To access the Merchant Resource Centre in the test environment go to https://esplusga.moneris.com/usmpg.
And use the logins provided in the previous table.

The test environment has been designed to replicate our production environment as closely as possible. One major
difference is that we are unable to send test transactions onto the production authorization network and thus Issuer
responses are simulated. Additionally, the requirement to emulate approval, decline and error situations dictates
that we use certain transaction variables to initiate various response and error situations.

The test environment will approve and decline credit card transactions based on the penny value of the
amount field.

For example, a credit card transaction made for the amount of $9.00 or $1.00 will approve since the .00 penny
value is set to approve in the test environment. Transactions in the test environment should not exceed $11.00.
This limit does not exist in the production environment. For a list of all current test environment responses for
various penny values, please see the Test Environment Penny Response table as well as the Test Environment
eFraud Response table, available at https://developer.moneris.com

ﬂ These responses may change without notice. Moneris Solutions recommends you regularly
NOTE refer to our website to check for possible changes.

The test environment will approve/register all ACH transactions as long as there is no error with the format.
For example, if all of the ACH variables are properly named and populated, all transactions will approve/register. If
there is a format violation, such as invalid data in one of the fields (ex. cust_zip requires ‘MI’ but ‘Michigan’ is sent)
then the ACH transaction will decline/fail to register.

cURL CA Root Certificate File:

The default installation of PHP/cURL does not include the cURL CA root certificate file. In order for the eSelectPlus
PHP API to connect to the eSelectPlus gateway during transaction processing, the ‘mpgclasses.php’ file that’s
included with the PHP API package needs to be modified to include a path to the CA root certificate file. Follow the
instructions below to set this up.

1) If cURL was not installed separately from your PHP installation, libcurl is included in your PHP installation. You
will need to download the ‘cacert.pem’ file from ‘http://curl.haxx.se/docs/caextract.html’ and save it to the necessary
directory. Once downloaded, rename the file to ‘curl-ca-bundle.crt’ (e.g. 'C:\path\to\curl-ca-bundle.crt'). If cURL was
installed separately from PHP, you may need to determine the path to the cURL CA root certificate bundle on your
system (e.g. 'C:\path\to\curl-ca-bundle.crt').

2) Insert the code below into the ‘mpgclasses.php’ file as part of the cURL option setting, at approximately line 73
below the line ‘curl_setopt($ch, CURLOPT SSL VERIFYPEER, TRUE);'

curl_setopt($ch, CURLOPT_CAINFO, 'C:\path\to\curl-ca-bundle.crt');

For more information regarding the CURLOPT_SSL_VERIFYPEER option, please refer to your PHP manual.

Page 84 of 117

eSELECTplus PHP API

November 6, 2012

22,

What Do | Need to Include in the Receipt?

Visa and MasterCard expect certain variables be returned to the cardholder and presented as a receipt when a
transaction is approved. These fields vary depending on what type of transaction was performed:

- Basic Transaction (Non Track2 / Card Not Present) — please refer to Appendix N. Basic Transaction

Receipt (Non Track2)

- Mag Swipe Transaction (Track2 / Card Present) — please refer to Appendix O. Mag Swipe Transaction

Receipt (Track2)

In addition, for non credit card transactions, such as Pinless Debit and ACH, there are certain fields that are
recommended to be returned in a receipt of registration of the transaction.

- Pinless Debit — please refer to Appendix P. Pinless Debit Transaction Receipt
- ACH Transaction (Check not present) — please refer to Appendix Q. ACH Transaction
- ACH Transaction (Check physically present) — please refer to Appendix R. ACH Transaction Receipt

(Check Physically Present)

For a breakdown of all required fields, as well as a sample of the receipt, please refer to the appropriate Appendix

listed above.

23. How Do |l Activate My Store?

Once you have received your activation letter/fax go to https:/esplus.moneris.com/usmpg/activate/ as instructed in
the letter/fax. You will need to input your store ID and merchant ID then click on ‘Activate’. In this process you will
need to create an administrator account that you will use to log into the Merchant Resource Centre to access and
administer your eSELECTplus store. You will need to use the Store ID and API Token to send transactions through

the API.

Once you have created your first Merchant Resource Centre user, please log on to the Interface by clicking the
“eSELECTplus” button. Once you have logged in please proceed to ADMIN and then STORE SETTINGS. At the

top of the page you will locate your production AP| Token.

24,

How Do | Configure My Store For Production?

Once you have completed your testing you are ready to point your store to the production host. You will need to
change the “host” to be esplus.moneris.com . You will also need to change the store_id to reflect your production
store ID and well the api_token must be changed to your production token to reflect the token that you received

during activation.

PRODUCTION DEVELOPMENT

var $Globals=array (

var $Globals=array (

MONERIS_PROTOCOL => 'https',

MONERIS_HOST => 'esplus.moneris.com',
MONERIS_PORT =>'443",

MONERIS_FILE => '/gateway_us/servlet/MpgRequest',
API_VERSION =>'MPG version 1.0',

CLIENT_TIMEOUT => '60"'

) i

MONERIS_PROTOCOL => 'https',

MONERIS_HOST => 'esplusqa.moneris.com',
MONERIS_PORT =>'443",

MONERIS_FILE => '/gateway_us/servlet/MpgRequest',
API_VERSION =>'MPG version 1.0',

CLIENT_TIMEOUT => '60'

Once you are in production you will access the Merchant Resource Centre at https:/esplus.moneris.com/usmpg.
You can use the store administrator ID you created during the activation process and then create additional users

as needed.

For further information on how to use the Merchant Resource Centre please see the HELP button found in the top

left corner of the website.

Page 85 of 117

eSELECTplus PHP API November 6, 2012

25. How Do | Get Help?

If you require assistance while integrating your store, please contact the Support Team:

For financial support:
Phone: 1-800-471-9511
Email: supportinfo@moneris.com

For technical and integration support:
Phone: 1-866-696-0488
Email: eselectplus@moneris.com

When sending an email support request please be sure to include your name and phone number, a clear
description of the problem as well as the type of API that you are using. For security reasons, please do not send
us your APl Token combined with your store ID, or your merchant number and device nhumber in the same
email.

Page 86 of 117

eSELECTplus PHP API

November 6, 2012

26. Appendix A. Definition of Request Fields

Request Fields

order_id

pan

expdate

amount

crypt_type

pos_code

txn_number

cust_id

track?2

50/ an

20/
variable

4 / num

9 / decimal

1/an

2/ num

255/
varchar

50/an

Merchant defined unique transaction identifier - must be unique for every
Purchase, PreAuth and Independent Refund attempt. For Refunds,
Completions and Voids the order_id must reference the original transaction.
Characters allowed for Order ID: a-z A-Z 0-9 _ - : . @ spaces

Credit Card Number - no spaces or dashes. Most credit card numbers today
are 16 digits in length but some 13 digits are still accepted by some issuers.
This field has been intentionally expanded to 20 digits in consideration for future
expansion and/or potential support of private label card ranges.

Expiry Date - format YYMM no spaces or slashes.

PLEASE NOTE THAT THIS IS REVERSED FROM THE DATE DISPLAYED
ON THE PHYSICAL CARD WHICH IS MMYY

*’expdate’ is optional for Pinless Debit Purchase

Amount of the transaction. This must contain 3 digits with two penny values.
The minimum value passed can be 0.01 and the maximum 9999999.99

E-Commerce Indicator:

1 - Mail Order / Telephone Order - Single

2 - Mail Order / Telephone Order - Recurring

3 - Mail Order / Telephone Order - Instalment

4 - Mail Order / Telephone Order - Unknown Classification

5 - Authenticated E-commerce Transaction (VBV/MCSC)

6 — Non Authenticated E-commerce Transaction (VBV/MCSC)
7 - SSL enabled merchant

8 - Non Secure Transaction (Web or Email Based)

9 - SET non - Authenticated transaction

Under normal presentment situations the value should be ‘00’.

In the case of a PreAuth/Completion, if the PreAuth was card present keyed-in
then the ‘pos_code’ for the completion should be ‘71’ (meaning that a
‘us_track2_preauth’ transaction was submitted where the ‘pan’ and ‘expdate’
variables were populated while the ‘track2’ was left blank).

In an unmanned kiosk environment, where the card is present, the value should
be 27’

If the solution is not “merchant and cardholder present” please call the support
desk and we will provide the proper POS Code.

Used when performing follow on transactions - this must be filled with the value
that was returned as the Txn_number in the response of the original
transaction. When performing a Capture this must reference the PreAuth.
When performing a Refund or a Void this must reference the Capture or the
Purchase.

This is an optional field that can be sent as part of a Purchase or PreAuth
request. It is searchable from the Moneris Merchant Resource Centre. ltis
commonly used for policy number, membership number, student ID or invoice
number.

This is a string that is retrieved from the mag swipe of a credit card by swiping
the credit card through a card reader. It is part of a mag swipe/track2
transaction.

Page 87 of 117

eSELECTplus PHP API

November 6, 2012

enc_track2

device_type

cavv

avs_street_number
avs_street_name

avs_zipcode

cvd_value

cvd_indicator

commcard_invoice

commcard_tax_amount

orig_order_id

dynamic_descriptor

status_check

an

19/an

9/an

4 / num

1/num

17/ an

9/ decimal

50/ an

25/ an

true/false

This is a string that is retrieved by swiping or keying in a credit card through a
Moneris provided encrypted mag swipe card reader. It is part of an encrypted
keyed or swiped transaction only. This string must be retrieved by a specific
device. Please refer to device_type for the list of current available devices.

Defines the encrypted mag swipe reader that was used for swiping the credit
card. Plesase note, this device must be provided by Moneris Solutions so that
the values are properly encrypted and decrypted. This field is case sensitive.

Available values are:
device_type="idtech"

This is a value that is provided by the Moneris MPI or by a third party MPI. Itis
part of a VBV/MCSC transaction.

Street Number & Street Name (max — 19 digit limit for street number and street
name combined). This must match the address that the issuing bank has on
file.

Zip or Postal Code — This must match what the issuing banks has on file.

Credit Card CVD value — this number accommodates either 3 or 4 digit CVD
values. Refer to Appendix I. Card Validation Digits (CVD) for further details.

Note: The CVD value supplied by the cardholder should simply be passed to
the eSELECTplus payment gateway. Under no circumstances should it be
stored for subsequent uses or displayed as part of the receipt information.

CVD presence indicator (1 digit — refer to Appendix I. Card Validation Digits
(CVD) for values)

Level 2 Invoice Number for the transaction. Used for Corporate Credit Card
transactions (Commercial Purchasing Cards).
Characters allowed for commcard_invoice: a-z A-Z 0-9 spaces

Level 2 Tax Amount of the transaction. Used for Corporate Credit Card
transactions (Commercial Purchasing Cards). This must contain 3 digits with
two penny values. The minimum value passed can be 0.00 and the maximum is
9999999.99

Merchant defined transaction identifier — used in the ReAuth transaction to refer
to the original PreAuth that has been partially captured.

Merchant defined description sent on a per-transaction basis that will appear on
the credit card statement appended to the merchant’s business name. Please
note, the combined length of the merchant’s business name and
dynamic_descriptor may not exceed 25 characters.

Once set to “true” the gateway will check the status of a transaction that has an
order_id that matches the one passed.
= [f the transaction is found the gateway will respond with the specifics of
that transaction (Check Appendix B. Definitions of Response Fields)
= If the transaction is not found then the gateway will respond with a not
found message (Check Appendix B. Definitions of Response Fields)
Once it is set to “false” the transaction will process as a new transaction

The order_id allows the following characters: a-z A-Z 0-9 _ - : . @ spaces

The commcard_invoice allows the following characters: a-z A-Z 0-9 spaces

NOTE

All other request fields allow the following characters: a-z A-Z0-9_-:. @ $ =/

Page 88 of 117

eSELECTplus PHP API

November 6, 2012

27. Appendix B. Definitions of Response Fields

Response Fields

Receiptld

ReferenceNum

ReponseCode

AuthCode
TransTime
TransDate
TransType
Complete
Message
TransAmount
CardType
Txn_number
TimedOut
Ticket
MaskedPan

RecurSucess

AvsResultCode

CvdResultCode

RecurUpdateSuccess
NextRecurDate
RecurEndDate
CardLevelResult

50/an

18 / num

3/ num

8/an
HHHE HE
yyyy-mm-dd
an
true/false
100/ an

2/ alpha
20/ an
true/false

n/a

####********####
HHEHE T

true/false
1/alpha

2/an

true/false
yyyy-mm-dd
yyyy-mm-dd
3/an

order_id specified in request

The reference number is an 18 character string that references the terminal
used to process the transaction as well as the shift, batch and sequence
number, This data is typically used to reference transactions on the host
systems and must be displayed on any receipt presented to the customer. This
information should be stored by the merchant. The following illustrates the
breakdown of this field where "640123450010690030” is the reference number
returned in the message, "64012345" is the terminal id, "001" is the shift
number, "069" is the batch number and "003" is the transaction number within
the batch. Moneris Host Transaction identifier.

Transaction Response Code

< 50: Transaction approved

>= 50: Transaction declined

NULL: Transaction was not sent for authorization

* If you would like further details on the response codes that are returned please
see the Response Codes document available at https://developer.moneris.com

Authorization code returned from the issuing institution

Processing host time stamp

Processing host date stamp

Type of transaction that was performed

Transaction was sent to authorization host and a response was received

Response description returned from issuing institution.

Credit Card Type

Gateway Transaction identifier

Transaction failed due to a process timing out
reserved

Indicates the first 4 last 4 digits of the credit card number that was swiped or
keyed in using the encrypted mag swipe reader so that it may be displayed on a
receipt.

Indicates whether the transaction successfully registered.

Indicates the address verification result. Refer to Appendix J. Address
Verification Service (AVS).

Indicates the CVD validation result. Refer to Appendix I. Card Validation Digits
(CVD).

Indicates whether the transaction successfully updated.
Indicates when the transaction will be billed again (recur).
Indicates when the Recurring Billing Transaction will end.

Please refer to Appendix L. Card Level Result Value for a list of all Visa and
MasterCard Card Level Result values.

Page 89 of 117

eSELECTplus PHP API

November 6, 2012

CavvResultCode

StatusCode

StatusMessage

1/an

3/an

found/not
found

The CAVV result code indicates the result of the CAVV validation. Note this is
only applicable to Visa VBV transactions.

0 = CAVV authentication results invalid

1 = CAVV failed validation; authentication

2 = CAVV passed validation; authentication

3 = CAVV passed validation; attempt

4 = CAVV failed validation; attempt

7 = CAVV failed validation; attempt (US issued cards only)

8 = CAVV passed validation; attempt (US issued cards only)

9 = CAVV failed validation; attempt (US issued cards only)

A = CAVV passed validation; attempt (US issued cards only)

B = CAVV passed validation; information only, no liability shift

Please refer to Appendix M. CAVV Result Code for a description for each
response.

The StatusCode is populated when status_check is set to “true” in the request
< 50: Transaction found
>= 50: Transaction not found

The StatusMessage is populated when status_check is set to “true” in the
request

Page 90 of 117

eSELECTplus PHP API November 6, 2012

28. Appendix C. Custinfo Fields

Field Definitions

Billing and Shipping Information

NOTE: The fields for billing and shipping information are identical. Please refer to section 8 - Purchase (with
Customer and Order details)for an example.

first_name 30/an
last_name 30/an
company_name 30/an
address 30/an
city 30/an
province 30/an
postal_code 30/an
country 30/an
phone 30/an
fax 30/an
tax1 30/an
tax2 30/an
tax3 30/an
shipping_cost 30/an

Item Information

NOTE: You may send multiple items. Please refer to section 8 - Purchase (with Customer and Order details) for
an example.

item_description 30/an

item_quantity 10/ num You must send a quanitity > 0 or the item will not be added to the
item list (ie. minimum 1, maximum 9999999999)

item_product_code 30/an

item_extended_amount 9 /decimal This must contain 3 digits with two penny values. The minimum

value passed can be 0.01 and the maximum 9999999.99
Extra Details
email 50/ an
instructions 50/an

If you send characters that are not included in the allowed list, these extra transaction details may not be
stored.

N§E All fields are alphanumeric and allow the following characters: a-z A-Z0-9 _-:. @ $ =/

Also, the data sent in Billing and Shipping Address fields will not be used for any address verification. Please
refer to the section 8 — Purchase (with CVD and AVS - eFraud).

Page 91 of 117

eSELECTplus PHP API

November 6, 2012

29. Appendix D. Recur and Recur Update Fields

Recur Request Fields

day, week, month, The unit that you wish to use as a basis for the Interval. This can be set as day,

recur_unit

period

start_date

start_now

recur_amount

num_recurs

amount

eom

0-999/ num

YYYY/MM/DD

true / false

9 / decimal

1-99/num

9 / decimal

week, month or end of month. Then using the “period” field you can configure
how many days, weeks, months between billing cycles.

This is the number of recur_units you wish to pass between billing cycles.
Example :

period = 45, recur_unit=day -> Card will be billed every 45 days.

period = 4, recur_unit=weeks -> Card will be billed every 4 weeks.

period = 3, recur_unit=month -> Card will be billed every 3 months.

period = 3, recur_unit=eom -> Card will be billed every 3 months (on the last day
of the month)

Please note that the total duration of the recurring billing transaction should not
exceed 5-10 years in the future.

This is the date on which the first charge will be billed. The value must be in the
future. It cannot be the day on which the transaction is being sent. If the
transaction is to be billed immediately the start_now feature must be set to true
and the start_date should be set at the desired interval after today.

When a charge is to be made against the card immediately start_now should be
set to ‘true’. If the billing is to start in the future then this value is to be set to
‘false’. When start_now is set to ‘true’ the amount to be billed immediately may
differ from the recur amount billed on a regular basis thereafter.

Amount of the recurring transaction. This must contain 3 digits with two penny
values. The minimum value passed can be 0.01 and the maximum 9999999.99.
This is the amount that will be billed on the start_date and every interval
thereafter.

The number of times to recur the transaction.

When start_now is set to ‘true’ the amount field in the transaction array becomes
the amount to be billed immediately. When start_now is set to ‘false’ the amount
field in the transaction array should be the same as the recur_amount field.

Recur Request Examples

srecurArray = array(‘recur_unit’=>‘month’, In the example to the left the first transaction will occur in the future
jstart_date = 2007/01/027, on Jan 2™ 2007. It will be billed $30.00 every 2 months on the 2" of
T - each month. The card will be billed a total of 12 times.

‘start_now’=>’false’,
‘period’ => ‘27,
‘recur_amount’=> “30.00"
) .

SmpgRecur = new mpgRecur ($recurArray);

StxnArray=array (‘type’=>'purchase',
‘order_id’=>‘monthly_bill’,
‘cust_id’=>‘mem-1234-01",
‘amount ’=>“30.00",
‘pan’=>‘5454545454545454",
‘expdate’=>‘0712",
‘crypt_type’=>"'2"

)i

Page 92 of 117

eSELECTplus PHP API November 6, 2012

srecurArray = array(‘recur_unit’=>‘week’, In the example on the left the first charge will be billed |mmed|ately.
,iiirigiiii,2,3297/01/02 ' The initial charge will be for $15.00. Then starting on Jan 2™ 2007
‘start_now’=>‘true’, the credit card will be billed $30.00 every 2 weeks for 26 recurring
‘period’ => ‘2/, charges. The card will be billed a total of 27 times. (1 x $15.00
‘recur_amoun’t=> “30.00’ (immediate) and 26 x $30.00 (recurring))

)i
SmpgRecur = new mpgRecur ($recurArray);

StxnArray=array (‘type’=>'purchase',
‘order_id’=>‘biweekly_bill’,
‘cust_id’=>‘mem-1234-02",
‘amount ’=>‘15.00",
‘pan’=>‘5454545454545454",
‘expdate’=>‘0712",
‘crypt_type’=>"'2"

)i

When completing the recurring billing portion please keep i in mind that to prevent the shifting of recur bill
ﬂ dates, avoid setting the start_date for anything past the 28" of any given month. For example, all b|II|ng dates
NOTE set for the 31 of May will shift and bill on the 30" in June and will then bill the cardholder on the 30" for every
subsequent month.

Recur Update Request Fields

cust_id 50/an This updates the current cust_id associated with the recurring transaction and
will be submitted with all future recurring purchases.

pan 20/ variable Credit Card Number - no spaces or dashes. Most credit card numbers today
are 16 digits in length but some 13 digits are still accepted by some issuers.
This field has been intentionally expanded to 20 digits in consideration for
future expansion and/or potential support of private label card ranges.
This will be the new credit card number charged with all future recurs. This
field pertains only to credit card and Pinless Debit transactions.

expdate YYMM / num Expiry Date - format YYMM no spaces or slashes, replaces the current expiry
date in the payment details and must be today’s date or later.
PLEASE NOTE THAT THIS IS REVERSED FROM THE DATE DISPLAYED ON
THE PHYSICAL CARD WHICH IS MMYY

avs_street_number 19/ an Street Number & Street Name (max — 19 digit limit for street number and street
name combined). This must match the address that the issuing bank has on
file. The updated AVS details will be submitted for all future credit card
recurs. Please note; the store must have the AVS feature enabled.

avs_street_name

avs_zipcode 9/ an Zip or Postal Code — This must match what the issuing bank has on file.
recur_amount 9 / decimal Amount of all future recurring transaction. This must contain 3 digits with two penny
values. The minimum value passed can be 0.01 and the maximum 9999999.99.
add_num 1-999 / num This is the number of recurring transactions to be added to the current total
number of recurs on file.
Example:

num_recurs® = 5, add_num = 2, New total number of recurs =7
*the “num_recurs” initially sent in while registering the recurring transaction.
Please refer to Recur Request Fields table for variable definition.

total_num 1-999 / num This is an update to replace the current total number of recurs on file.
Example:
num_recurs® = 5, total_num = 2, New total number of recurs = 2
*the “num_recurs” initially sent in while registering the recurring transaction.
Please refer to Recur Request Fields table for variable definition.

Page 93 of 117

eSELECTplus PHP API November 6, 2012

hold true / false A transaction can be put 'On Hold' at any time. While a transaction is 'On Hold'
it will not be billed when the time comes for it to recur, but the number of recurs
will be decremented.

terminate true / false A Recurring Billing transaction can be Terminated at any time. PLEASE
NOTE TERMINATED RECURRING TRANSACTION CAN NO LONGER BE
REACTIVATED.

When completing the Recur Update portion please keep in mind that the profile cannot be changed to have a
m new end date greater than 10 years from today. Also the new end date cannot be today or earlier.

NOTE
Once a Recurring Billing profile has been terminated it can no longer be reactivated.

Recur Update Response codes:

The Recur Update response is a 3 digit numeric value. The following is a list of all possible responses once a Recur
Update transaction has been sent thru.

Recur Update Response Codes
RESULT VALUE | DEFINITION
001 Recurring transaction successfully updated (optional: terminated)
983 Can not find the previous transaction
984 Data error: (optional: field name)
985 Invalid number of recurs
986 Incomplete: timed out
null Error: Malformed XML

Page 94 of 117

eSELECTplus PHP API November 6, 2012

30. Appendix E. Pinless Debit Fields

Pinless Debit Request Fields

presentation_type 1/alpha Identifies how merchants obtain the Pinless Debit account.
- X' for Telephone/VRU
- ‘W’ for Internet

intended_use 1/ num Identifies the party who initiated the transaction.
- “0” = Merchant initiated the payment
- “1” = Customer initiated the payment

p_account_number 25/ num The billing invoice number — no spaces or dashes. The length of the account
number varies with a maximum length of 25 digits.

Pinless Debit Customer Information
NOTE: The following Account Holder information fields are optional.

first_name 50/an
last_name 50/ an
address 50/ an
address2 50/ an
city 50/an
state 2/ alpha The state must be submitted as exactly 2 characters (ex. Ml — Michigan)
zip_code 15/an

If you send characters that are not included in the allowed list, the Pinless Debit transaction may not be
properly registered.

NﬁE All alphanumeric fields allow the following characters: a-z A-Z0-9 _-:. @ $ =/
Also, the data sent in the Pinless Debit Customer Information fields will not be used for any address
verification.

Page 95 of 117

eSELECTplus PHP API

November 6, 2012

31. Appendix F. Achinfo Fields

AchInfo Request Fields

sec

routing_num

account_num

check_num

account_type

micr

dl_num

magstripe

image_front

image_back

3/an

9 /num

50 / num

16 / num

savings / checking

200/ alpha

an

yes/ no

an

an

ACH Customer Information

ACH sec Code:

The following sec codes apply only if check not physically present.
ppd - Prearranged Payment and Deposit

ccd - Cash Concentration or Disbursement

web - Internet Initiated Entry

The following SEC codes apply only if ckeck present.
pop — Point of Sale Purchase

boc — Back Office Conversion

arc — Account Receivable Conversion

Please refer to Appendix G. ACH Sec Codes and Process Flow for full sec code
description

The first number in the MICR, or magnetic ink character recognition, line at the
bottom of a check is the bank's check routing number. It is exactly nine digits
long and always starts with 0, 1, 2 or 3.

The account number may appear before or after the check number in the
check's MICR line at the bottom of the check. The length of the account number
varies with a maximum length of 50 digits.

The sequential number for checks appears in both the MICR line at the bottom
of the check and the upper right corner of the check. The check number length
may vary; the maximum length is 16 digits. This is an optional field.

Identifies the type of bank account. The account type must be submitted as
either ‘savings’ or ‘checking’. This field is case sensitive.

The check’s raw MICR number obtained from the scanner. Do not modify the
micr data value after it has already been scanned.
e.g. micr = "t071000013t7429413470129";

The first two characters of this field should be the State Code of the Driver’s
License, followed by a dash (ASCII 45), then the ID Data.
e.g. Colorado: dI_num = “CO-12312312";

Fixed value. The magstripe data is obtained when scanning the Driver’s
License.

The front image of the check obtained from the scanner, base64 encoded.

The back image of the check obtained from the scanner, base64 encoded.

NOTE: The following Account Holder information fields are optional.

cust_first_name
cust_last_ name
cust_address1
cust_address2
cust_city
cust_state

cust_zip

50/ an
50/ an
50/an
50/ an
50/an
2 / alpha
15/an

The state must be submitted as exactly 2 characters (ex. Ml — Michigan)

Page 96 of 117

eSELECTplus PHP API November 6, 2012

If you send characters that are not included in the allowed list, the ACH transaction may not be properly
registered.

NoTE All alphanumeric fields allow the following characters: a-z A-Z0-9 _-:. @ $ =/

Also, the data sent in the ACH Customer Information fields will not be used for any address verification.

32. Appendix G. ACH Sec Codes and Process Flow

ACH Sec Codes

Variable |-

sec 3/an The following SEC codes apply only if check is not physically present:

PPD — (Prearranged Payment and Deposit) Debit (Sale): Consumer grants the merchant the
right to initiate a one time or recurring charge(s) to his or her account as bills become due.
Credit (Refund): Transfers funds into a consumer’s bank account. The funds being deposited
can represent a variety of financial transactions, such as payroll, interest, pension, dends,
etc.

CCD - (Cash Concentration or Disbursement) Debit (Sale): Client grants the merchant the
right to initiate a one time or recurring charge(s) to a business bank account. Credit (Refund):
Transfer funds to a client’s business bank account.

WEB — (Internet Initiated Entry) Debit (Sale): A Debit entry to a consumer’s bank account
initiated by a merchant. The consumer’s authorization is obtained via the Internet. Credit
(Refund): N/A.

The following SEC codes apply only if ckeck is present:

POP — (Point of Sale Purchase) Client presents check to the merchant at time of purchase.

BOC — (Back Office Conversion) Client presents check to the merchant at time of purchase
and check is converted to electronic format.

ARC — (Account Receivable Conversion) Client’s check is received through mail and
processed by merchant.

* only ‘ppd’ and ‘ccd’ apply to the ACH Credit transaction

Page 97 of 117

eSELECTplus PHP API

November 6, 2012

Process Flow for ACH Transactions

Yes

sec code = pop

\ 4

can check a

Yes

Is Client
Present?

Is Check Present?

No

processed via

Web No

i

< sec code = arc> (sec code = web)

No

sec code = boc

A

- Scan front of
check.

- Stamp check with
void stamp.

- Provide proper
ACH receipt.

- Return check to
client.

- Drivers License
might be
mandatory.

-

- Scan front and
back of check at
the back office.
- Destroy check
within 2 weeks.

-~

Isita
Personal
check?

Yes
No

sec code = ppd

Isita
Corporate
check?

A

sec code = ccd

A

- Client must
accept electronic
contract.

- Client must
accept contract via
fax or wet

-~

Not an ACH
transaction

Page 98 of 117

eSELECTplus PHP API November 6, 2012

33. Appendix H. Error Messages

Global Error Receipt — You are not connecting to our servers. This can be caused by a firewall or your internet
connection.

Response Code = NULL — The response code can be returned as null for a variety of reasons. A majority of the
time the explanation is contained within the Message field. When a ‘NULL’ response is returned it can indicate that
the Issuer, the credit card host, or the gateway is unavailable, either because they are offline or you are unable to
connect to the internet. A ‘NULL’ can also be returned when a transaction message is improperly formatted.

Below are error messages that are returned in the Message field of the response.

Message: XML Parse Error in Request: <System specific detail>
Cause: For some reason an improper XML document was sent from the API to the servlet

Message: XML Parse Error in Response: <System specific detail>
Cause: For some reason an improper XML document was sent back from the servlet

Message: Transaction Not Completed Timed Out
Cause: Transaction times out before the host responds to the gateway

Message: Request was not allowed at this time
Cause: The host is disconnected

Message: Could not establish connection with the gateway:
<System specific detail>
Cause: Gateway is not accepting transactions or server does not have proper access to internet

Message: Input/Output Error: <System specific detail>
Cause: Servlet is not running

Message: The transaction was not sent to the host because of a duplicate order id
Cause: Tried to use an order id which was already in use

Message: The transaction was not sent to the host because of a duplicate order id
Cause: Expiry Date was sent in the wrong format

Page 99 of 117

eSELECTplus PHP API November 6, 2012

34. Appendix|l. Card Validation Digits (CVD)

The Card Validation Digits (CVD) value refers to the numbers appearing on the back of the credit card which are not
imprinted on the front. The exception to this is with American Express cards where this value is indeed printed on
the front. The CvdInfo parameter is broken down into two elements. The first element is the CVD Value itself.

The second element is the CVD Indicator. This value indicates the possible scenarios when collecting CVD
information. This is a 1 digit value which can have any of the following values:

CVD INDICATOR
VALUE DEFINITION
0 CVD value is deliberately bypassed or is not provided by the merchant.
1 CVD value is present.
2 CVD value is on the card, but is illegible.
9 Cardholder states that the card has no CVD imprint.

CVD Response codes:

The CVD response is an alphanumeric 2 byte variable. The first byte is the numeric CVD indicator sent in the
request; the second byte would be the response code. The following is a list of all possible responses once a CVD
value has been passed in.

CVD RESPONSE CODES

RESULT VALUE | DEFINITION

M Match

Y Match for AmEx

N No Match

P Not Processed

S CVD should be on the card, but Merchant has indicated that CVD is not present
R

U

0

Retry for AmEx
Issuer is not a CVD participant
ther Invalid Response Code

m The CVD value supplied by the cardholder should simply be passed to the eSELECTplus payment
gateway. Under no circumstances should it be stored for subsequent uses or displayed as part of the

NOTE receipt information.

*For additional information on how to handle these responses, please refer to Appendix K. Additional
Information for CVD and AVS.

Page 100 of 117

eSELECTplus PHP API

November 6, 2012

35.

Appendix J. Address Verification Service (AVS)

The Address Verification Service (AVS) value refers to the cardholder’s street number, street name and zip/postal
code as it would appear on their statement. Avsinfo is broken down into three elements:

Element

Type Length

Street Number

Numeric

Street Name

Alphanumeric

19 characters combined.

Zip/Postal Code

Alphanumeric 9 characters

The following table outlines the possible responses when passing in AVS information.

AVS RESPONSE CODES
VALUE VISA/DISCOVER / JCB MASTERCARD
A Address matches, ZIP does not. Acquirer rights not implied. Address matches, zip code does not.
B Street addresses match. Zip code not verified due to incompatible N/A
formats. (Acquirer sent both street address and zip code.)
C Street addresses not verified due to incompatible formats. (Acquirer N/A
sent both street address and zip code.)

D Street addresses and zip codes match. N/A

F Street address and zip code match. Applies to U.K. only N/A

G Address information not verified for international transaction. Issueris | N/A

not an AVS participant, or AVS data was present in the request but
issuer did not return an AVS result, or Visa performs AVS on behalf of
the issuer and there was no address record on file for this account.

I Address information not verified. N/A

K N/A N/A

L N/A N/A

M Street address and zip code match. N/A

N No match. Acquirer sent postal/ZIP code only, or street address only, | Neither address nor zip code matches.

or both zip code and street address. Also used when acquirer
requests AVS but sends no AVS data.
0 N/A N/A
P Zip code match. Acquirer sent both zip code and street address but N/A
street address not verified due to incompatible formats.
R Retry: system unavailable or timed out. Issuer ordinarily performs Retry; system unable to process.
AVS but was unavailable. The code R is used by Visa when issuers
are unavailable. Issuers should refrain from using this code.
S N/A AVS currently not supported.
U Address not verified for domestic transaction. Issuer is not an AVS No data from Issuer/Authorization
participant, or AVS data was present in the request but issuer did not | system.
return an AVS result, or Visa performs AVS on behalf of the issuer
and there was no address record on file for this account.
w Not applicable. If present, replaced with ‘Z’ by Visa. Available for For U.S. Addresses, nine-digit zip code
U.S. issuers only. matches, address does not; for address
outside the U.S. postal code matches,
address does not.

X N/A For U.S. addresses, nine-digit zip code
and addresses matches; for addresses
outside the U.S., postal code and
address match.

Y Street address and zip code match. For U.S. addresses, five-digit zip code
and address matches.

Z Postal/Zip matches; street address does not match or street address For U.S. addresses, five digit zip code

not included in request.

matches, address does not.

Page 101 of 117

eSELECTplus PHP API

November 6, 2012

VALUE

AMERICAN EXPRESS

Billing address matches, zip code does not

Customer name incorrect, zip code matches

Customer name incorrect, billing address and zip code match

Customer name incorrect, billing address matches

Customer name matches

Customer name and zip code match

Customer name, billing address, and zip code match

Billing address and zip code do not match

Customer name and billing address match

System unavailable; retry

AVS not currently supported

Information is unavailable

Customer name, billing address, and zip code are all incorrect

Billing address and zip code both match

N|<|[S|[c|ln|=|o|Z|=Z|r|x|[m|m|TO|>

Zip code matches, billing address does not

36.

Appendix K. Additional Information for CVD and AVS

The responses that are received from CVD and AVS verifications are intended to provide added security and fraud
prevention, but the response itself will not affect the completion of a transaction. Upon receiving a response, the
choice to proceed with a transaction is left entirely to the merchant.

Please note that all responses coming back from these verification methods are not direct indicators of whether a
merchant should complete any particular transaction. The responses should not be used as a strict guideline of
which transaction will approve or decline.

Please note that CVD and AVS verification is only applicable towards Visa, MasterCard, Discover, JCB
NOTE and American Express transactions.

Page 102 of 117

eSELECTplus PHP API November 6, 2012

37. Appendix L. Card Level Result Value

The Card Level Result value refers to the issuer-supplied data on file in the Cardholder Database. Visa and
MasterCard will populate this field with an appropriate product identification value which can be used to track card-
level activity by an individual account number. These details will be populated within the CardLevelResult response
field when returned by the associations.

The following table outlines the possible Card Level Result responses.

CARD LEVEL RESULT VALUE
VALUE VISA VALUE VISA
A Visa Classic/Traditional L Electron
AX American Express M MasterCard/Euro Card and Diners
B Visa Gold/Platinum/Traditional Rewards N Visa Platinum
C Visa Signature N1 TBA
D Visa Signature Preferred/Visa Infinite O Reserved
DI Discover P Visa Gold
E Reserved Q Private Label
F Visa Classic Q1 Private Label Prepaid
G Visa Business R Proprietary
G1 Visa Signature Business S Visa Purchasing
G2 Visa Business Check Card S1 Visa Purchasing with Fleet
G3 Visa Enhanced Business S2 Visa GSA Purchasing
H Visa Check Card/Debit S3 Visa GSA Purchasing with Fleet
| Visa Infinite S4 Commercial Business Loan
J Reserved S5 Commercial Transport EBT
J1 Visa General Prepaid S6 Business Loan
J2 Visa Prepaid Gift S7 Visa Distribution
J3 Visa Prepaid Healthcare T Reserved/Interlink
J4 Visa Prepaid Commercial U Visa Travel Money
K Visa Corporate \ Reserved
K1 Visa GSA Corporate T&E
VALUE MASTERCARD VALUE MASTERCARD
CIR Cirrus MPZ MasterCard Prepaid Debit Standard- Gov. Consumer
DAG Gold Debit MasterCard Salary MRC Electronic Consumer Pre-Paid (Non U.S.)
DAP Platinum Debit MasterCard Salary MRF Standard Deferred
DAS Standard Debit MasterCard Salary MRG Standard Pre-Paid (Non U.S.)
DLG Debit Gold - Delayed Debit MRH Platinum Prepaid Travel Card
DLH Debit World Embossed - Delayed Debit MRJ Pre-Paid Gold Card
DLP Debit Platinum - Delayed Debit MRK Pre-Paid Public Sector Commercial Card
DLS Debit Standard - Delayed Debit MRO MasterCard Rewards Only
DOS Standard Debit MasterCard Social MRP Standard Retailer Centric Payments
MAB World Elite For Business MRW Prepaid Business Card (Non U.S.)
MAC Corporate World Elite MSA Pre-Paid Maestro Payroll Card
MAV MasterCard Activation Verification MSB Maestro Small Business Card
MBD MasterCard Professional Debit Business Card MSF Pre-Paid Maestro Gift Card
MBE Electronic Business Card MSG Pre-Paid Maestro Consumer Reloadable Card
MBK Black Card MSI Maestro
MBP MasterCard Corporate Prepaid MSJ Prepaid Maestro Gold
MBT MasterCard Corporate Prepaid Travel MSM Pre-Paid Maestro Consumer Promotion Card
MCB BusinessCard Card MSN Pre-Paid Maestro Insurance Card
MCC Credit (Mixed BIN) MSO Pre-Paid Maestro Other Card
MCD Debit MasterCard MSQ Reserved
MCE Electronic Card MSR Pre-Paid Maestro Travel Card
MCF Fleet Card MST Pre-Paid Maestro Teen Card
MCG Gold Card MSV Pre-Paid Maestro Government Benefit Card
MCH MasterCard Premium Charge MSW Pre-Paid Maestro Corporate Card
MCO Global Certified Corporate Card MSX Pre-Paid Maestro Flex Benefit Card
MCP Purchasing Card MSY Pre-Paid Maestro Employee Incentive Card
MCS Standard Card MSZ Pre-Paid Maestro Emergency Assistance Card
MCT Titanium Card MUW World Domestic Affluent
MCV Merchant Branded Program MWB World MasterCard For Business
MCW World MasterCard MWD World Deferred
MDB Debit MasterCard Business Card MWE World Elite Card
MDG Gold Debit MasterCard MWO World Elite Corporate Card

Page 103 of 117

eSELECTplus PHP API November 6, 2012

MDH World Debit Card MWR World Retailer Centric Payments

MDJ Debit World Elite OLB Maestro Small Business - Delayed Debit

MDL Business Debit Other Embossed OLG Maestro Gold - Delayed Debit

MDO Debit Other OLP Maestro Platinum - Delayed Debit

MDP Debit MasterCard Platinum OLS Maestro - Delayed Debit

MDR Debit Brokerage OoLwW World Maestro - Delayed Debit

MDS Debit MasterCard PMC Proprietary Credit Card (Sweden)

MDT Commercial Debit Card PMD Proprietary Debit Card (Sweden)

MEC Electronic Commercial PSC Common Proprietary Credit Card (Sweden)

MEF Electronic Payment Account PSD Common Proprietary Debit Card (Sweden)

MFB Flex World Elite PVA Private Label A

MFD Flex Platinum PVB Private Label B

MFE Flex Charge World PVC Private Label C

MFH Flex World PVD Private Label D

MFL Flex Charge Platinum PVE Private Label E

MFW Flex Charge World PVF Private Label F

MGF Government Commercial Card PVG Private Label G

MHA MasterCard Healthcare Prepaid (Non Tax) PVH Private Label H

MIA Prepaid MasterCard Unembossed Student Card PVI Private Label |

MIP Prepaid MasterCard Student Card PVJ Private Label J

MIU Debit MasterCard Unembossed (Non US) PVL Private Label L

MNF Public Sector Commercial Card SAG Gold MasterCard Debit - Immediate Debit

MNW New World SAL Standard Maestro Salary

MOC Standard Maestro Social SAP Platinum MasterCard Salary - Inmediate Debit

MOG Maestro Gold SAS Standard MasterCard Salary - Immediate Debit

MOP Maestro Platinum SOL UK Domestic Solo Brand

MOW World Maestro SOS Standard MasterCard Social - Immediate Debit

MPA Prepaid Debit Standard-Payroll SWI UK Domestic Switch Brand

MPB Preferred Business Card TBE Electronic Business - Immediate Debit

MPF Prepaid Debit Standard- Gift TCB Business Card - Immediate Debit

MPG Debit Standard Prepaid - General Spend TCC Mixed Bin - Immediate Debit

MPH MasterCard Cash TCE Electronic - Immediate Debit

MPJ Prepaid Debit Card Gold TCF Fleet Card - Immediate Debit

MPK Prepaid Government Commercial Card TCG Gold Card - Immediate Debit

MPL Platinum Card TCO Corporate - Inmediate Debit

MPM MC Prepaid Debit Standard- Consumer Incentive | TCP Purchasing Card - Immediate Debit

MPN MC Prepaid Debit Standard- Insurance TCS Standard Card - Immediate Debit

MPO MC Prepaid Debit Standard- Other TCW World Signia Card - Immediate Debit

MPP Prepaid Card TEC Electronic Commercial - Immediate Debit

MPR MC Prepaid Debit Standard- Travel TNF Public Sector Commercial Card - Immediate Debit

MPT MC Prepaid Debit Standard- Teen TNW New World - Immediate Debit

MPV MC Prepaid Debit Standard- Government TPB Preferred Business Card - Immediate Debit
Debit MC Business Prepaid Business To

MPW Business TPL Platinum - Immediate Debit

MPX MasterCard Prepaid Debit Standard- Flex Benefit | VIS VisaNet

MPY MasterCard Prepaid Debit Standard - Employee WBE World MasterCard Black Edition

Page 104 of 117

eSELECTplus PHP API November 6, 2012

38. Appendix M. CAVV Result Code

The Cardholder Authentication Verification Value (CAVV) is a value that allows VisaNet to validate the integrity of
the VbV transaction data. These values are passed back from the issuer to the merchant after the
VbV/SecureCode authentication has taken place. The merchant then integrates the CAVV value into the
authorization request using the 'us_cavv_purchase' or 'us_cavv_preauth' transaction type.

For more information on sending VBV/SecureCode transactions, please refer to our "Moneris MPI - Verified By Visa
/ MasterCard SecureCode PHP API" document.

NﬁE Please note that the CAVV Result Code is only applicable towards Visa transactions.

The following table describes the contents of the CAVV data response and what it means to the merchant.

Table of CAVV result codes
Result A
Code Message What this means to you as a merchant...
CAVYV authentication results For this transaction you may not receive protection from
invalid. chargebacks as a result of using VBV as the CAVV was
0 considered invalid at the time the financial transaction was
processed.
Please check that you are following the VBV process correctly
and passing the correct data in our transactions.
CAVV failed validation; Provided that you have implemented the VBV process correctly
1 authentication the liability for this transaction should remain with the Issuer for
chargeback reason codes covered by Verified by Visa.
CAVYV passed validation; The CAVV was confirmed as part of the financial transaction.
2 authentication This transaction is a fully authenticated VBV transaction (ECI 5)
3 CAVYV passed validation; attempt The CAVV was confirmed as part of the financial transaction.
This transaction is an attempted VBV transaction (ECI 6)
CAVV failed validation; attempt Provided that you have implemented the VBV process correctly
4 the liability for this transaction should remain with the Issuer for
chargeback reason codes covered by Verified by Visa.
CAVV failed validation; attempt (US | Please check that you are following the VBV process correctly
issued cards only) and passing the correct data in our transactions.
7 Provided that you have implemented the VBV process correctly
the liability for this transaction should be the same as an
attempted transaction (ECI 6)
8 CAVV passed validation; attempt The CAVV was confirmed as part of the financial transaction.
(US issued cards only This transaction is an attempted VBV transaction (ECI 6)
= CAVV failed validation; attempt Please check that you are following the VBV process correctly
(US issued cards only) and passing the correct data in our transactions.
9 Provided that you have implemented the VBV process correctly
the liability for this transaction should be the same as an
attempted transaction (ECI 6)
CAVYV passed validation; attempt The CAVV was confirmed as part of the financial transaction.
A (US issued cards only) This transaction is an attempted VBV transaction (ECI 6)
CAVYV passed validation; The CAVV was confirmed as part of the financial transaction.
B information only, no liability shift However, this transaction does qualify for the liability shift. Treat
this transaction the same as an ECI 7.

Page 105 of 117

eSELECTplus PHP API November 6, 2012

39. Appendix N. Basic Transaction Receipt (Non Track2)

For all regular credit card transactions (card not present), the credit card associations expect certain fields to be
presented to the cardholder on a receipt.

Field Description

1 Merchant Name The name of the store / business.
2 Merchant URL Web site address of the store / business.
3 Transaction Type The type of transaction that was performed:

- Sale (Purchase)

- Offline Sale (Force Post)

- Authorization (PreAuth)

- Authorization Completion (Completion)

- Sale Void (Correction / Purchase Correction)
- Refund

NOTE: The terms listed above are the names for transactions as they are to
be displayed on receipts. Other terms used for the transaction type are
indicated in brackets.

4 Transaction Amount The total amount being paid by credit card.

5 AVS / CVD Result The result for AVS and CVD verifications are one alpha character. This
character will indicate if the verification was performed or not by the merchant
or the Card Associations.

6 Transaction Date and Time The date may be in any format, but must include the day, month and year. The time
must be in 24 hour format. It is good practice to include the seconds in the time format
to help with tracing transactions.

7 Reference Number 6400135 = terminal number
001 = shift
001 = batch number
001 = sequence number
0 = reserved
8 Auth Code The authorization number is only printed if the transaction is approved. If the

transaction is declined, the title is printed but the field is blank.

9 Response Code The 3 digit response code returned by the issuer (ex. 000 — 999)
10 Response Message Message indicating whether the transaction was Approved or Declined.
11 Cardholder Name Display both First and Last Name as submitted by the cardholder.

12 Goods and Services Order A list of all items/services that are being paid for in this transaction.

13 Return Policy The refund policy is only a requirement for e-commerce transactions.

Page 106 of 117

eSELECTplus PHP API

November 6, 2012

TEST MERCHANT

101 Main St. | Suite 101 | Chicage, IL | 90210
T: 533-553-5333 | F: 533-553-3566 | www.moneris.com

TRANSACTION APPROVED - THANK YOU

Plezze print thiz page and keep it 25 your transaction receipt.

Payment Details

Transaction Type: SALE
Transaction Amount: 52,00 (USD)
Order ID: myvtE1170729%3
Card Mum;: *5%F #5488 2252 4940
Card Type: VISA
Rasp Code - Message: 001 - APPROVED 9785611
Auth Code: 578611
Reference Mum: 640000010010230130 M
Date/ Time: Jun 06 2007 O7:07PM
CVD Result: CVD was not performed, (Code: n/fa)
AVS Result: AVS check was not performed, (Code: nfa)
Level 2 Invoice Mumber: 1234
Level 2 Tax Amount: 50,30

Item Details

Description Product Code Quantity
Shoes - Red Slippers AS123 1
Shipping:
Taxes:
Total (USD}:

Price
$1.00
50.30

50.20
52.00

Customer Details

Customer ID: My personal customer ID
Email Address: bob@smith.com
Note: Please deliver to the back door

Billing Address
First Name: Beb

Lask Mame: Smith
Company: Moneris
Address: 101 Main 5t
City: Springfield
State: MY

Shipping Address
First Name: Mary
Last Mame: Smith
Company: My Company
Address: 111 Lakeshors Blvd
City: Chicago
State: [llincis
Zip Code: 1234356
Country: USA
Phone: 335-535-53355
Fax: 3535-330-33656

Zip Code: 234567
Country: USA
Phome: 553-111-2222
Fax: 353-222-4444

Page 107 of 117

eSELECTplus PHP API November 6, 2012

40. Appendix O. Mag Swipe Transaction Receipt (Track2)

For all mag swipe (card present) transactions, the credit card associations expect certain mandatory fields to be
presented to the cardholder on a receipt.

Field Description

1 Merchant Name The name of the store / business.

2 Store Address The civic address of the store / business, which must include the street,
town/city, state, and ZIP code.

3 Transaction Type The type of transaction that was performed:

- Sale (Mag Swipe Purchase)

- Offline Sale (Mag Swipe Force Post)

- Authorization (Mag Swipe PreAuth)

- Authorization Completion (Mag Swipe Completion)

- Sale Void (Mag Swipe Correction / Purchase Correction)
- Refund (Mag Swipe Refund)

NOTE: The terms listed above are the names for transactions as they are to
be displayed on receipts. Other terms used for the transaction type are
indicated in brackets.

4 Account Type The type of credit card: VISA, MC, AMEX, etc.
5 Transaction Amount The total amount being paid by credit card.
6 AVS / CVD Result The result for AVS and CVD verifications are one alpha character. This

character will indicate if the verification was performed or not by the merchant
or the Card Associations.

7 Primary Account Number Cardholder’s credit card number. The customer’s copy of the receipt must
(PAN) have all but the last 4 digits of PAN masked out.
8 Transaction Date and Time The date may be in any format, but must include the day, month and year.

The time must be in 24 hour format. It is good practice to include the seconds
in the time format to help with tracing transactions.

9 Reference Number 6400135 = terminal number
001 = shift
001 = batch number
001 = sequence number
0 = reserved
10 Card Entry Indicator Credit cards can be manually keyed or swiped; if manual, the indicator is “M”;

if swiped, the indicator is “S”

11 Auth Code The authorization number is only printed if the transaction is approved. If the
transaction is declined, the title is printed but the field is blank.

12 Response Code The 3 digit response code returned by the issuer (ex. 000 — 999)

Page 108 of 117

eSELECTplus PHP API November 6, 2012

Field Description

13 Response Message Message indicating whether the transaction was Approved or Declined.
Format: message rrr (where message = defined below, rrr = response code)

Message Definition:
If the Response Code is between 00 and 49 (inclusive)
(‘0’ <= Response Code =< ‘49)

Message = “APPROVED - THANK YOU”
Any other response code (including ‘null’ and empty)
Message = “TRANSACTION NOT APPROVED”

14 Signature The signature forms the cardholder’s authority for the Sale transaction.
NOTE: Only the merchant’s copy requires the cardholder’s signature.

For Refund and Sale Void transactions, the merchant must sign the
Cardholder’s copy of the cardholder receipt.

15 Cardholder Agreement This text is required on cardholder transaction receipts for the following types
of transactions:

Cardholder will pay card issuer above amount pursuant to Cardholder
Agreement

- Sale

- Offline Sale

- Authorization

- Authorization Completion

This text is NOT required on cardholder transaction receipts for the following
types of transactions:

- Refund
- Sale Void

16 Customer Copy Or Merchant Copy

Page 109 of 117

eSELECTplus PHP API

November 6, 2012

TEST MERCHANT

101 Main St.

Chicage IL 20210
Phane: 555-555-5555
Fax: 555-555-5566

W _Mmaneris com

TYPE SALE

ORDER ID mvEd117127E54
I:lbIRD HLIH EXEEEN S TEEXE qm
ACCOUNT B

DATE Jun 06 2007 07 LEPH
REF MM G400000100102 30140 5
ALUTH CODE 005445

CviD RESULT nfa

AVE RESULT rfa

AMOUNT £1.00

SIEHNATURE

Cardholder will pay card iEsuer above amount
pursuant to Cardholder &greament

AFPROVED - THANK YOU 001

Page 110 of 117

eSELECTplus PHP API

November 6, 2012

41.

Appendix P. Pinless Debit Transaction Receipt

For all Pinless Debit transactions the credit card associations expect certain fields to be presented to the cardholder
on a receipt

Field Description

1

2

10

11

12

Merchant Name
Merchant URL

Transaction Type

Transaction Amount

Transaction Date and Time

Reference Number

Auth Code

Response Code
Response Message
Cardholder Name

Goods and Services Order

Return Policy

The name of the store / business.
Web site address of the store / business.
The type of transaction that was performed:

- Sale (Purchase)
- Refund

NOTE: The terms listed above are the names for transactions as they are to
be displayed on receipts. Other terms used for the transaction type are
indicated in brackets.

The total amount being paid by Pinless Debit.
The date may be in any format, but must include the day, month and year.

The time must be in 24 hour format. It is good practice to include the seconds
in the time format to help with tracing transactions.

6400135 = terminal number
001 = shift

001 = batch number

001 = sequence number
0 = reserved

The authorization number is only printed if the transaction is approved. If the
transaction is declined, the title is printed but the field is blank.

The 3 digit response code returned by the issuer (ex. 000 — 999)
Message indicating whether the transaction was Approved or Declined.
Display both First and Last Name as submitted by the cardholder.

A list of all items/services that are being paid for in this transaction.

The refund policy is only a requirement for e-commerce transactions.

Page 111 of 117

eSELECTplus PHP API

November 6, 2012

TEST MERCHANT

1 dth Avenue Suite 101 Los Angeles A 90210
T 999-555-5555 F) 999-555-5586 www.monreris.com

TRANSACTION APPROVED - THANK YOU

Payment Details

Transaction Type:
Order ID:

Card Type:

Card Num:

Reference Num:

Date fTime:

Auth Code:

Message - Resp Code:

Total Amount:

Refund Policy:

SALE
myt2356365718
DERIT

640000030013455270 M

Aug 01 2008 1:10PM

345527

APPROVED - THANK YOU 001
$5.00 (UsD)

Please return within 30 days of purchase,

Item Details

Description Product Code

Quantity

Shipping:
Tax 1:

Tax 2:
Total (USD):

Price
$0.00
$0.00
$0.00
$5.00

Customer Details

Customer ID:

Email Address:
Mote:

Address Details

Billing

Shipping

Page 112 of 117

eSELECTplus PHP API November 6, 2012

42. Appendix Q. ACH Transaction Receipt (Check Not Present)

For an ACH transaction, a transaction confirmation is not mandatory; though eSELECTplus does recommend that a
receipt of registration of the transaction be provided to the customer. Below is a list of recommended fields and the
format they are to be displayed in.

Field Description

1 Merchant Name The name of the store / business.
2 Merchant URL Web site address of the store / business.
3 Transaction Type The type of transaction that was performed:

- Check Sale (ACH Debit)
- Check Refund (ACH Credit)
- Check Reversal (ACH Reversal)

NOTE: The terms listed above are the names for transactions as they are to
be displayed on receipts. Other terms used for the transaction type are
indicated in brackets.

4 Payment Type Indicate that this is an ACH processed transaction.

5 SEC Code Specify which SEC Code was submitted. Identifies how the bank account
information was collected.
i.e. WEB — Internet Initiated Entry

6 Transaction Amount The total amount being debited or credited to the bank account.
7 Transaction Date and Time The date may be in any format, but must include the day, month and year.

The time must be in 24 hour format. It is good practice to include the seconds
in the time format to help with tracing transactions.

8 Reference Number 6400135 = terminal number
001 = shift
001 = batch number
001 = sequence number
0 = reserved
9 Auth Code The authorization number is only printed if the transaction is approved. If the

transaction is declined the field may be omitted.

10 Response Code The 3 digit response code returned in the transaction (ex. 000 — 999)

11 Response Message / Message indicating whether the transaction was Registered or Failed to
Result Register.

12 Account Number Customer’s bank account number. All but the last 4 digits of the account

number must be masked out.

13 Routing Number Check routing number to identify the Financial Institution.
14 Check Number Used for check tracking purposes.
15 Account Type Indicate whether this is a Savings or Checking account.

Page 113 of 117

eSELECTplus PHP API

November 6, 2012

TEST MERCHANT

101 Main 5t, | Suite 101 | Chicage, IL | 90210
T: 533-553-5533 | Fi 533-553-3566 | www.moneris.com

TRANSACTION REGISTERED - THANK YOU

Payment Details

Transaction Type:
Payment Type:

SEC Code:
Transaction Amount:
Order 1D:

Account Num:
Routing Mum:

Chechk Num:
Account Type:

Resp Code - Message:
Reference Num:
Date,/ Time:

CHECK SALE

ACH

PPD - Prearraged Payment and Deposit
510.00 (USD)
mch8116953112
**¥3123

11000013

100

Savings

027 - REGISTERED * =
001000010010360920 M
Jun D& 2007 06:38PM

ACH Customer Information

Customer Name: Bob Smith
Street Address 1: 101 Roag 5t
Street Address 2: Apt 101
City: New York
State: NY
Zip Code: 123455
Item Details
Description Product Code Quantity Price
Shoes - Red Slippers AS123 1 £1.00
Shoes - Blus Suade BC435 1 £2.00
Shoes - Yellow Tap CD567 2 £2.00
Shipping: 52.00
Taxes: 51.00
Total (USD): £10.00

Customer Details

Customer ID: My personzl customer ID

Email Address: bob@smith.com
Note: Please deliver to the back door

_—
First Mame: Bob First Name: Mary
Last Mame: Smith Last Name: Smith
Company: Moneris Company: My Company
Address: 101 Main 5t Address: 111 Lakeshore Blvd
City: New York City: Chicago
State: NY State: Ilincis
Zip Code: 123436 Zip Code: 234567
Country: USA Country: LUSA
Phone: 3535-535-5355 Phone: 553-111-2222
Fax: 335-335-3366& Fax: 553-222-4444

Page 114 of 117

eSELECTplus PHP API November 6, 2012

43. Appendix R. ACH Transaction Receipt (Check Physically Present)

For an ACH transaction, a transaction confirmation is not mandatory; though eSELECTplus does recommend that a
receipt of registration of the transaction be provided to the customer. Below is a list of recommended fields and the
format they are to be displayed in.

Field Description

1 Merchant Name The name of the store / business.
2 Merchant URL Web site address of the store / business.
3 Transaction Type The type of transaction that was performed:

- Check Sale (ACH Debit)
- Check Reversal (ACH Reversal)

NOTE: The terms listed above are the names for transactions as they are to
be displayed on receipts. Other terms used for the transaction type are
indicated in brackets.

4 Payment Type Indicate that this is an ACH processed transaction.

5 SEC Code Specify which SEC Code was submitted. Identifies how the bank account
information was collected.
i.e. POP — Point of Purchase

6 Transaction Amount The total amount being debited or credited to the bank account.
7 Transaction Date and Time The date may be in any format, but must include the day, month and year.

The time must be in 24 hour format. It is good practice to include the seconds
in the time format to help with tracing transactions.

8 Reference Number 6400135 = terminal number
001 = shift
001 = batch number
001 = sequence number
0 = reserved
9 Auth Code The authorization number is only printed if the transaction is approved. If the

transaction is declined the field may be omitted.

10 Response Code The 3 digit response code returned in the transaction (ex. 000 — 999)

11 Response Message / Message indicating whether the transaction was Registered or Failed to
Result Register.

12 Account Number Customer’s bank account number. All but the last 4 digits of the account

number must be masked out.

13 Routing Number Check routing number to identify the Financial Institution.
14 Check Number Used for check tracking purposes.
15 Account Type Indicate whether this is a Savings or Checking account.

Page 115 of 117

eSELECTplus PHP API

November 6, 2012

16 Signature

17 Printed Name
18 Telephone Number

19 Check Holder Agreement

The signature forms the customer’s authority for the ACH Debit transaction. It
is only required for POP — Point of Purchase transactions.

NOTE: Only the merchant’s copy requires the signature.

For Reversal transactions, the merchant must sign the customer’s copy of the
receipt.

The customer’s name, as it appears on the check. Only required for POP —
Point of Purchase transactions.

The telephone number of the check holder. Only required for POP
transactions.

This text is required on ACH Debit transaction when the SEC code is POP —
Point of Purchase or BOC — Back Office Conversion.

I authorize the merchant to convert my check to an Electronic Funds Transfer
or paper draft, and to debit my account for the amount of the transaction.

In the event that my draft or EFT is returned unpaid | agree that a fee as
allowable by law may be charged to my account via draft or EFT.

Page 116 of 117

eSELECTplus PHP API

November 6, 2012

US QA - MERCHANT 1

753 Main Street 753 Main Street
T: 555-555-5555 F: 1234

My stery WY 99501
www.Vault.com

TRANSACTION APPROVED - THANK YOU

Payment Details

Transaction Type:
Payment Type:

SEC Code:
Transaction Amount:
Order ID:

Account Num:
Routing Num:

Check Num:

Account Type:

Resp Code - Message:
Auth Code:
Reference Num:
Date/Time:

Refund Policy:

I authorize the merchant to

CHECK SALE

CHECK

POP - Point of Purchase
$1.00 (USD)

novlitestl

HEHZIEZ

071000013

113

Checking

005 - APPROVED * =AUTH MNUM 66&8-410
663410
0oo099100010030990 M
Mov 13 2005 01:36PM

1234

canvert my check to an Electronic Funds Transfer or paper draft, and to

debit my account for the amount of the transactian.

In the event that my draft or EFT is returned unpaid I agree that a fee as allowable by law may be
charged to my account wia draft or EFT.

Signature: x

Printed Name:

Telephone NMumber:

ACH Customer Information

Customer Name: Bob Smith

Street Address 1:
Street Address 2:

3300 Bloor St w
4th floor west tower

City: Toronto
State: ON
Zip Code: M1M1M1

Item Details

Description

Mini Bears Helmet
Mini Bills Helmet

-Eustnmer Datalls

Product Code Quantity Price
BEQOCWS9 1 $4.00
BUFDO990 Z $6.00

Shipping: $2.00
Tax 1: $1.00

Tax 3: £1.00

Total (USD): 41.00

Customer ID; customerl
Email Address: T Hamis@ChicagoBears.com
Mote: Must arive before opening day at Lambeau

Address Detalls

Eiling Shipping
Tommie Harris Tommie Harrs
Da Bears Da Bears

454 Michigan Ave 454 Michigan ave
Chicago

Mlinois llinpis

99879 99579

Usa s

Phone: T64-906-9969
Fax: 764-908-9990

Fhone: 764-908-9989
Fax: 7G4-908-3950

Page 117 of 117

