
SumUp

OAuth (Open Authorization)
Authorization Code Flow

by: Waquas Saeed

Overview

To use SumUp APIs your application must authenticate itself with one of the following
flow:

1. Authorization Code Flow + Refresh Token
a. Used when merchant data is required along with payment scope. Such as

transaction history,subaccount. (depending on scopes enabled)
b. Is more secure.

2. Client Credentials Flow
a. Merchant data like (transaction history) cannot be done through this. This

only allows merchants to pay online.

Audience:

This document will help the technical team on the partner/merchant side for detailed
information on Authorization Code Flow for SumUp.

It covers the following details:

● Step by step flow with diagrams
● Sample requests and responses
● Technical details for implementation

1. Authorization Code Flow:

Following diagram shows the step by step process of authorization code flow and each step is
explained in more detail below.

Diagram 1.1: Step by Step flow:

The diagram (1.1) shows the complete flow of authorization code flow and the entities
involved in the process. The main entities with responsibilities are:

Entity Responsibility

Resource Owner
(Merchant User)

An entity capable of granting access to a protected resource.
A merchant or end-user having SumUp credentials.

Client
(Client Application)

An application making protected resource requests on behalf
of the resource owner and with its authorization.
An application can be executed on a server, desktop or other
devices.

Authorization Server -
AS
(SumUp)

The server issuing access tokens to the client after
successfully authenticating the resource owner and obtaining
authorization.
Tokens can be issued by the Authorization Server.

Resource Server -
RS
(SumUp)

The server hosting the protected resources, capable of
accepting and responding to protected resource requests
using access tokens.
API endpoints hosted by SumUp for accessing the resources.

The authorization code flow initiates in the following sequence:

[Seq 1] - the client application redirects the merchant user to the request authorization
endpoint. The request authorization endpoint parameters are:

Request Authorization endpoint URL: https://api.sumup.com/authorize

Parameter
Name

Parameter Value Parameter
Type

response_type
(mandatory)

The value must be code to indicate that you expect to
receive an authorization code

string

client_id
(mandatory)

The Client ID of your application generated from
SumUp Dashboard (OAuth - Create Client Credentials
JSON file)

string

redirect_uri
(mandatory)

The URI to which the merchant user is redirected after
authorizing your application to access their user's
account data and to which the authorization code is
sent. The value must match exactly one of the
registered URIs for your application

string

scope A space-separated list of scopes for which you
request authorization. If you don't specify any scopes

string

https://developer.sumup.com/docs/register-app#3-create-oauth-client-credentials

in the request, your application will be granted
authorization for the default scopes

state A unique local state that can be used for correlating
requests and responses and for preventing cross-site
request forgery

string

https://tools.ietf.org/html/rfc6749#section-10.12
https://tools.ietf.org/html/rfc6749#section-10.12

2. Sample Request Authorization URL:

https://api.sumup.com/authorize?
response_type=code&
client_id=fOcmczrYtYMJ7Li5GjMLLcUeC9dN&
redirect_uri=https://sample-app.example.com/callback&
scope=payments user.app-settings transactions.history user.profile_readonly&
state=2cFCsY36y95lFHk4

[Seq 2] - the Authorization Server (AS) validates the request authorization and verifies
the URL parameters sent by the client application.

The Authorization Server (AS) shall validate:
- response_type value should be equal to code. If code value is not defined then

the client application will redirect to invalid request error by using the
redirect_uri.

- client_id should associate with merchant’s user OAuth Client Credentials. If no
client_id or incorrect client_id is defined then an empty page is shown with
no further processing.

- redirect_uri should match against the client_id being used. If no redirect_uri or
incorrect redirect_uri is defined then an empty page is shown with no
further processing.

- scope is optional. If any authorization scopes are to be requested in the URL
then the same should be enabled at SumUp end. If additional authorization
scopes are sent in the URL which are not activated at SumUp end then the
client application will redirect to the invalid scope error by using the
redirect_uri with no further processing.

- state is optional.

[Seq 3] - the Authorization Server (AS) displays the login screen to the merchant user if
the previous request in Seq 2 is validated.

[Seq 4] - the merchant user enters the SumUp Credentials for authentication.

[Seq 5] - the Authorization Server (AS) validates the SumUp credentials and further
processing is not being made if no credentials or incorrect credentials are provided.

[Seq 6] - the Authorization Server (AS) displays the authorization consent screen to the
merchant user after validating the SumUp credentials in the Seq 5. This triggers an
authorization prompt describing which application is requesting authorization from the
merchant user.

[Seq 7] - the merchant user accepts the authorization consent by clicking on the
Authorize button. If the merchant user denies and clicks on the Cancel button the
Authorization Server (AS) will return an error parameter with an access_denied value to
the redirect_uri with no further processing.

[Seq 8] - the Authorization Server (AS) prepares the redirect_uri after accepting the
authorization consent from the merchant user.

[Seq 9] - the Authorization Server(AS) redirects the client application to the redirect_uri
specified in the Seq 1 with additional parameters such as code and state (if included in
the Seq 1). The example shows the response received after a successful authorization:

3. Sample Response from Authorization Server:
https://sample-app.example.com/callback?
code=be366ce9fccd0c337d1da29b31d06dd1135ab95401562883&
state=2cFCsY36y95lFHk4

The code received from Authorization Server (AS) is:
- valid for only 60 seconds.
- mandatory for retrieving an access token using authorization code flow.
- invalid after 60 seconds. The authorization code flow should be initiated from

the Seq 1 when the code becomes invalid or expired.

[Seq 10] - the client application makes a request to generate a token endpoint for
retrieving tokens. The generate a token endpoint parameters are:

Token endpoint URL: https://api.sumup.com/token

Header should have Content-Type: application/x-www-form-urlencoded

Parameter
Name

Parameter Value Parameter
Type

grant_type
(mandatory)

The value must be authorization_code to indicate
that you expect to receive tokens

string

client_id
(mandatory)

The Client ID of your application generated from
SumUp Dashboard (OAuth - Create Client Credentials
JSON file)

string

client_secret
(mandatory)

The Client Secret of your application generated from
SumUp Dashboard (OAuth - Create Client Credentials
JSON file)

string

code
(mandatory)

The authorization code received from requesting an
authorization code

string

4. Sample Generate a token Request:

curl -X POST \
https://api.sumup.com/token \
-H 'Content-Type: application/x-www-form-urlencoded' \
-d 'grant_type=authorization_code'\
-d 'client_id=fOcmczrYtYMJ7Li5GjMLLcUeC9dN'\
-d

'client_secret=717bd571b54297494cd7a79b491e8f2c1da6189c4cc2d3481380e8366eef
539c' \
-d 'code=be366ce9fccd0c337d1da29b31d06dd1135ab95401562883'

[Seq 11] - the Authorization Server (AS) validates the token generation request along
with the authorization code being sent in the request. The authorization code has a
validity of 60 seconds after which it becomes invalid or expired and no tokens can be
retrieved using the token generation endpoint. If this condition is met, the
authorization code flow should be initiated from the Seq 1.

[Seq 12] - the Authorization Server (AS) sends a response back to the client application
with tokens along with additional information returned in a JSON structure in the body of
the response. The JSON structure has following data:

Parameter
Name

Parameter Value Parameter
Type

access_token The access token that you need to use in your
requests to the SumUp API.

string

token_type The type of the token. The value is always Bearer. string

expires_in The validity of the access token in seconds. integer

refresh_token The refresh token provided in the request call string

5. Example JSON structure:

{
"access_token":

"565e2d19cef68203170ddadb952141326d14e03f4ccbd46daa079c26c910a864",
"token_type": "Bearer",
"expires_in": 3600,
"refresh_token":

"d180031bfe9bac36c336e5746637810272546865e9c9586012f462a56f3fe9af"
}

The access token received from Authorization Server (AS) is:
- valid for only 3600 seconds (1 hour). The expiry describes in expires_in

parameter of the response.
- mandatory to access SumUp REST API endpoints.
- invalid/expired after 3600 seconds and can not be used.

The refresh token received from Authorization Server (AS) is:
- valid for a period of 6 months.
- invalid/expired after 6 months and can not be used.

Grant Types:

The term grant type refers to the way an application gets an access token. The grant type also
determines the method and exact sequence that are involved in the OAuth process.

Grant Type Use Case

Authorization Code
(authorization_code)

Used for most web and mobile application scenarios that want to call
the REST web services.
Uses the client application to transport the intermediate code
(authorization code) with the login screen, which is then exchanged
for the tokens.

Refresh Token
(refresh_token)

Used to extend the Authorization Code grant type without the login
screen.
Exchanges the refresh token to issue tokens.

Client Credentials
(client_credentials)

When a user is not involved and is being used for a service to call
REST web services.
Exchanges the client credentials for a token.

